AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING

P.O. BOX 265 OGDENSBURG NEW YORK 13669 (315) 472-5270

BOX 5120. STN. "F" OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772
FAX: (613) 226-2802

INSTRUCTIONS

MODEL AVF-ES-PS-N-W-PEB FULSE GENERATOF

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

A.

TEST ARRANGEMENT

1) The equipment should be connected in the general fashion shown above. Since the AVF unit provides an output pulse rise time as low as one ns, a fast oscilloscope (at least 500 MHz and preferably faster) should be used to display the waveform.
2) The output FRF is equal to the input trigger pulse FRF.
3) The output pulse width is controlled by the ten turn FW control and the 3 position range switch as follows. The max allowable FRF for each range is also shown:

FW
PRF

| Fiange A: | 2 ns to $\quad 6 \mathrm{~ns}$ | 0 to 10 KHz | |
| :--- | ---: | ---: | ---: | ---: |
| Range $\mathrm{B}:$ | 6 ns to 100 ns | 0 to 10 KHz | |
| Fange C: | 100 ns to 2 us | 0 to 10 KHz | |
| | 10 us | | 0 to 2 KHz |

(2\% duty cycle limit)
4) The autput amplitude is contralled by the ten turn AMF' control. Note that when the pulse width range is changed (eg. from A to B), the output amplitude will change.
5) Note that when the pulse width range is changed (eg. from A to B), the output amplitude may also change. Also, the propagation delay will also change. The propagation delays for the three ranges are approximately as follows:
A) 100 ns
B) 250 ns
C) 100 ns
6) CAUTION: The maximum PFF, FW or duty cycle conditions must nat be exceeded. Under simultaneous conditions of wide pulse width, high FFF and high load current, the bias voltage applied to the output power stage decreases and as a result the attainable output peak voltage decreases to less than 130 volts. Under conditions of severe loading the output stage may be damaged. The output switching elements can be replaced following the procedure given in the following section.
7) QVERLDAD INDICATDR. Units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a shart circuit), the protective circuit will turn the
output of the instrument DFF and turn the indicator light ON. The light will stay DN (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn $O N$ (i.e. light $O F F$) for about 1 second. If the overload condition persists, the instrument will turn OFF again (ine. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Reducing FRF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Removing output load short circuit (if any)
4) The AVR unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused valtage selector-cable connector assembly.
B)

FRONT PANEL CONTROLS

(1) DN-GFF Switch. Applies prime power to all stages.
(2) IN. BNC input conmector for input TTL trigger signal (PW > 50 ns).
(3) DUT: ENC output camnector supplies all three output ranges to a 50 ohm laad.
(4) FW Controls. The qutput pulse width is controlled by the ten turn F'W contral and the 3 position range switch as follows. The mas allowable fiRF for each range is also shown:

FW FFF
 cycle limit)
(5) AMF Control. The output amplitude (for all three ranges) is contralled by this 10 turn amplitude control.
(6) GVERLDAD INDICATOF. AVF units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument $0 F F$ and turn the indicator light ON. The light will stay ON (i.e. output GFF) for about 5 seconds after which the instrument will attempt to turn $\quad N$ (i.e. light OFF) for about 1 secand. If the overload condition persists, the instrument will turn DFF again (i=e. 1 ight $O N$) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Dverload conditions may be removed by:

1) Feducing FFF (i.e. switch to a lower range)
2) Reducing pulse width (i ee. switch to a lower range)
3) Fiemoving output laad short circuit (if any)
C)

REAR PANEL CONTROLS

(1) FUSED CONNECTOR VOLTAGE SELECTOR: The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A 5 SB).
(2) 1.0A SB. Fuse which protects the output stage if the output duty cycle rating is exceeded.
D)

FUNCTIONAL BLOCK DIAGRAM

The AVR unit consists of the following basic modules:
a) FG-A pulse generator module
b) $\mathrm{FG}-\mathrm{B}$ pulse generator module
c) FG-C pulse generator module
d) FS-BC power supply module (qenerates +390 volts for FG (B module and +150 volts for FG-C module)
e) TRF-B rise time, fall time module for B
f) EA-B amplitude control module for B
g) PE-FC pawer cambiner madule (or gate)
h) F'S-15 module. Supplies -15V DC to various modules
i) 24 volts $D C$ power supply board
j) AVFi-OL overlaad module

The key modules are interconnected as shown in Fig. D.
In the event that the unit does not provide an output, check the 0.5 Ampere 1 ine fuse and the 1.0 Ampere $5 B$ fuse in the rear panel fuse holder. If no output is obtained for Range A, then the PG-A module must be replaced. If no output is obtained for Fange B, it is most likely that the SLJ switching elements on the side of the FG-B module have failed. The case of the SLS elements should be at a DC potential of 390 volts. If this potential is substantially less, then the SLZ elements should be replaced. If no output is obtained for Fange C, it is most likely that the SLS switching elements on the bottom of the FG-C module have failed. The SLS elements may be accessed by removing the 1.5 \times 3.O inch cover plate on the bottom side of the AVR-ES-W-FS chassis and extracting the SLS elements from their sockets by means of needle nose pliers. The 5 LS element is an N channel UMOS transistor in a TO 220 package and its operation may be checked on a curve tracer. When re-installing the SLS elements, take care to insure that the short lead is placed adjacent to the black dot on the bottom of the chassis.
D.chroff 10.16 .91

