AVTECH ELECTROSYSTEMS LTD.
NANOSECOND WAVEFORMELECTRONICS SINCE 1975

TEL: 1-800-265-6681
FAX: 1-800-561-1970
e-mail: info@avtechpulse.com
http://www.avtechpulse.com
$\square \quad \begin{aligned} & \text { P.O. BOX } 5120 \text { STN. F } \\ & \text { OTTAWA, ONTARIO } \\ & \text { CANADA K2C } 3 \text { H4 } \\ & \text { TEL: }(613) 226-5772 \\ & \text { FAX: }(613) 226-2802\end{aligned}$

INSTRUCTIONS

MODEL AVR-G1-C PULSE GENERATOR

S.N.:

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 613-226-5772 or 1-800-265-6681
Fax: 613-226-2802 or 1-800-561-1970

E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY 2
TABLE OF CONTENTS 3
FIG. 1: PULSE GENERATOR TEST ARRANGEMENT 4
GENERAL OPERATING INSTRUCTIONS 5
FIG. 2: FRONT PANELS CONTROLS 8
FRONT PANEL CONTROLS. 9
Fig. 3: BACK PANEL CONTROLS 13
BACK PANEL CONTROLS 14
Fig. 4a POWER SUPPLY 16
SYSTEM DESCRIPTION AND REPAIR PROCEDURE. 17
PERFORMANCE CHECK 18

FIG. 1: PULSE GENERATOR TEST ARRANGEMENT

GENERAL OPERATING INSTRUCTIONS

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The TRIG output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 dB attenuator should be placed at the input to the scope trigger channel. The TRIG output precedes the main output when the front panel ADVANCE-DELAY switch is in the ADVANCE position. The TRIG output lags the main output when the switch is in the DELAY position.

The DELAY control controls the relative delay between the reference output pulse provided at the TRIG output and the main output. This delay is variable over the range of 0.1 us to 1 ms :

MIN MAX

Range 1	0.1 us	1.0 us
Range 2	1.0 us	10 us
Range 3	10 us	100 us
Range 4	100 us	1 ms

3) The output pulse width is controlled by means of the front panel one turn PW control and by the PW RANGE control (units with -PWT option have a ten turn PW control). Note that the MODE A-B switch must be in the A position. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding 20\%:

Range 1	PW min	PW max
	10.1 us	1.0 us
	PRF max 1 kHz	PRF max 1 kHz
Range 2	1.0 us	10 us
	PRF max 1 kHz	PRF max 1 kHz
Range 3	10 us	100 us
	PRF max 1 kHz	PRF max 1 kHz
Range 4	100 us	1 ms
	PRF max 1 kHz	PRF max 200

To voltage control the output pulse width within each range, set the rear panel switch in the EXT position and apply 0 to +10 Volts between terminal A and ground ($\mathrm{R}_{\mathrm{IN}} \geq 10 \mathrm{~K}$). (option).
4) To obtain a stable output display the PRF control on the front panel should be set mid range. The front panel INT-EXT toggle switch should be in the INT position and the MODE A-B switch should be in the A position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by rotating the PRF and PRF FINE controls.
5) The output pulse amplitude is controlled by means of the front panel ten turn AMP control. To voltage control the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 Volts between terminal A and ground (R_{IN} $\geq 10 K$). (EA option).
6) An external clock may be used to control the output PRF of the AVR unit by setting the front panel INT-EXT toggle switch in the EXT position and applying a 0.2 us (approx.) TTL level pulse to the TRIG BNC connector input. With the MODE A-B switch in the A position, the output pulse width will be controlled by the front panel PW controls. If the switch is in the B position, the output pulse width equals the input trigger pulse width.
7) For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE PULSE button.
8) CAUTION: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a PRF exceeding 1 kHz or at duty cycles exceeding 20\%. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) PRF is kept to a minimum, i.e. operate in a low PRF range when possible rather than in a high PRF range.
b) Keep the output PW to a minimum.
9) OVERLOAD INDICATOR. AVR-G-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Reducing PRF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Removing output load short circuit (if any)
4) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.
5) For further assistance:

Tel: 613-226-5772
Fax: 613-226-2802

FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) PRF Control. Varies PRF from 1.0 Hz to 1.0 kHz as follows:

Range 1	1	Hz to 10	Hz
Range 2	10	Hz to 100 Hz	
Range 3	100	Hz to 1	kHz

(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the TRIG output (4) and the main output (5). This delay is variable over the range of 0.1 to about 1 ms . Delay LEADS or LAGS depending on the position of the ADVANCE-DELAY switch.
MIN MAX

Range 1	0.1 us	1.0 us
Range 2	1.0 us	10 us
Range 3	10 us	100 us
Range 4	100 us	1 ms

(4) TRIG Output. This output is used to trigger the scope time base. The output is a TTL level 100 ns (approx.) pulse capable of driving a fifty Ohm load. This output precedes the output at (5) if the two-position ADVANCE-DELAY switch is in the ADVANCE position. This output follows the output at (5) if the switch is in the DELAY position. The delay range is variable from 0.1 us to 100 us. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
(5) OUT Connector. BNC connector provides output to a 10 K (or higher) load.
(6) PW Control. A one turn control (ten turn control for units with the -PWT option) and 4-position range switch which varies the positive output pulse width from 0.1 us to 1 ms (when the MODE A-B switch is in the A position). The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

PW min \quad PW max

(6) PW Control. A one turn control (ten turn control for units with the -PWT option) and 4-position range switch which varies the positive output pulse width from 0.1 us to 1 ms (when the MODE A-B switch is in the A position). The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

PW min

Range
$1 \quad 0.1 \mathrm{us}$
PRF $\max 1 \mathrm{kHz}$

Range 2
1.0 us
PRF $\max 1 \mathrm{kHz}$

Range 310 us 100 us
PRF max 1 kHz PRF max 1 kHz

Range 4100 us 1 ms
PRF max 1 kHz

PW max
1.0 us

PRF max 1 kHz

10 us
PRF max 1 kHz

PRF max 200 Hz
(7) AMP Control. A ten turn control which varies the output pulse amplitude.
(8) EXT-INT-MAN Control. With this toggle switch in the INT position, the PRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF control. With the toggle switch in the EXT position, the AVR unit requires a 0.2 us TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source. With the MODE A-B switch in the A position the output pulse width is controlled by the PW controls. With the MODE A-B switch in the B position, the output pulse width equals the input trigger pulse width. For single pulse operation, set the INT-EXT-MAN switch in the MAN position.
(9) SINGLE PULSE. For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE PULSE button.
(10) MODE A-B. For output pulse width control via the PW controls, the MODE switch should be in the A position. When triggering via an externally applied TTL level trigger pulse, the output pulse width equals the input trigger pulse width if the MODE switch is in the B position.
(11) OVERLOAD INDICATOR. AVR units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Reducing PRF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Removing output load short circuit (if any)

TOP COVER REMOVAL AND RACK MOUNTING

1) The interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).
2) The -R rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.

Fig. 3: BACK PANEL CONTROLS

BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.25 A SB).
(2) 1.0A SB. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 Volts between terminal A and ground ($R_{\mathrm{IN}} \geq 10 \mathrm{~K}$). (option).
(4) EW. To voltage control the output pulse width, set the switch in the EXT position and apply 0 to +10 Volts between terminal A and ground $\left(R_{\mathbb{N}} \geq 10 \mathrm{~K}\right)$. (option).
(5) OS. To DC offset the out pulse from 0 to ± 50 Volts, apply the required DC potential (0 to ± 50 Volts) to this terminal.

Fig. 4a POWER SUPPLY

Fig. 4b

SYSTEM DESCRIPTION AND REPAIR PROCEDURE

The AVR-G1-C consists of the following basic modules:

1) AVR-G1-PG pulse generator module
2) AVR-G1-CL clock module
3) +24 V power supply board
4) AVR-G1-PS power supply module
5) AVR-G1-PW pulse width module
6) AVR-OL overload module

The modules are interconnected as shown in Fig. 4. The clock module controls the output PRF and the relative delay between the main output and the SYNC outputs. The PG pulse generator modules generate the output pulse. The PS module generates 0 to +250 Volts to power the pulse generator module. The PW module controls the output pulse width. In the event of an instrument malfunction, it is most likely that the rear panel 1.0A SB fuse or some of the output switching elements (SL22) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NOTE: First turn off the prime power. CAUTION: Briefly ground the SL22 tabs to discharge the 250 Volts power supply potential. The elements may be removed from their sockets by means of a needle nosed pliers. The SL22 is a selected VMOS power transistor in a TO 220 package and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL22 switching elements, take care to insure that the short lead (of the three leads) is adjacent to the back of the chassis. If the switching elements are not defective, then the four Phillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:
a) 0.1 us TTL level outputs are observed at pins 2 and 3 .
b) The PRF of the outputs can be varied over the range of 1 Hz to 1 kHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 0.1 us to 1.0 us by the DELAY controls.

AVR-GI-C updated in liond
Mar 99

$$
\begin{aligned}
& -E W \\
& -E A \\
& -O S
\end{aligned}
$$

