- P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265

TEL: (315) 472-5270
FAX: (613) 226-2802

西 BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3H4
TEL: (613) 226-5772
FAX: (613) 226-2802

INSTRUCTIONS

MODEL AVR-G1-C-IBMI PULSE GENERATOR
S.N. :

WARFANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) This unit was specifically designed to drive high impedance loads ($R_{L} \geqslant 10 K$). The unit may fail if operated into low impedance loads (eg. 50 ohm).
3) The sync output channel provides TTL level signals. To avoid overdriving the TRIG input channel of same scopes, a 30 db attenuator should be placed at the input to the scope trigger channel. The TRIG output precedes the main output when the front panel LEAD-LAG switch is in the LEAD position. The TRIG output lags the main output when the switch is in the LAG position.
4) To obtain a stable output display the PW and PRF contrals on the front panel should be set mid-range. The front panel TRIG toggle switch should be in the INT pasition and the MDDE $A-B$ switch should be in the A position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by Fotating the PRF controls. CAUTION: Do not exceed the duty cycle rating of 50.0\%.
5) When the MODE A-B switch is in the A position, the output pulse width is contralled by means of the front panel one turn PW control and by the PW RANGE control. The minimum and maximum $P W$ for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding 20%.

PW min

Range 1	PRF	$\begin{aligned} & 0.1 \\ & \max \end{aligned}$	$\begin{aligned} & 45 \\ & 100 \end{aligned}$	kHz	PRF	1.0 \max	45 100
Range 2		1.0	45			10	us
	PRF	max	100	kHz	PRF	max	50
Range 3		10	45			100	45
	PRF	max	50	kHz	PRF	max	5
Range 4		100	U5			1	ms
	PRF	max	5	kHz	PRF	max	500

To voltage control the output pulse width within each range, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Riw > 10K). (option).
6) The output pulse amplitude is controlled by means of the front panel one turn AMP control. To voltage control the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground ($\mathrm{Fin}_{\mathrm{IN}}>10 \mathrm{~K}$). (option).

日) When triggered externally, the output pulse width will equal the input trigger pulse width if the MODE A-B switch is in the b position. When the switch is in the A position, the output pulse width is controlled by the front panel controls.
10) If additional assistance is requiredy

Tel: (613) 226-5772
Fax: (613) 226-2日02

Fig. 2 FRONT PANEL CONTROLS

(1) DN-DFF Switch. Applies basic prime power to all stages.
(2) PRF Control. Varies PRF from 1.0 Hz to 1 kHz as follows:

| Range 1 | 10 Hz | to 100 Hz | |
| :--- | :--- | ---: | :--- | ---: |
| Range 2 | 100 Hz | to | 1 kHz |
| Range 3 | 1 kHz to 10 kHz | | |
| Range 4 | 10 kHz to 100 kHz | | |

DELAY Control. Contrals the relative delay between the reference output pulse provided at the TRIG output (4) the main output (5) and (6). This delay is variable over the range of 0.1 to about 1 sec. Delay LEADS or LAGS depending on the position of the LEAD-LAG switch.

> MIN MAX

Range 1
0.1 us
1.045

Range 21.0 us 10 us
Range $3 \quad 10$ us 100 us
Range 4100 us 1 ms
(4) TRIG Dutgut. This output is used ta trigger the scope time base. The output is a TTL level 100 ns (approx.) pulse capable of driving a fifty ohm load. This output precedes the output at (5) or (6) if the two position LEAD-LAG switch is in the LEAD position. This output follows the output at (5) or (6) if the switch is in the LAG position. The delay range is variable from 0.1 us to 1 ms . The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
(5) QUI Connector. ENC connector provides output to a high impedance load $\langle\geqslant 10 K$).
(6) PW Control. When the MODE A-B switch is in the A position, this one turn control and 4 position range switch varies the positive cutput pulse width from 0.1 us to 1.0 ms . The minimum and maximum FW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding 50\%.

(7) AMP Control. A one turn control which varies the output pulse amplitude from 0 to 100 V to a high impedance load ($R_{L} \geqslant 10 K$).
(8) EXT-INT Control. With this toggle switch in the INT position, the PRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF control. With the toggle switch in the EXT position, the AVR unit requires a 0.2 us TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.
(9) MDDE A-B. With this switch in the A position, the output pulse width is controlled by the front panel controls. When the switch is in the B position and the unit is triggered externally, the output pulse width equals the input trigger pulse width.
(10) AVR units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument GFF and turn the indicator light $O N$. The light will stay $O N$ (i.e. output DFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn DFF again (i.e. light $O N$) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Reducing PRF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Removing output load short circuit (if any)

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.25 Amp SE)
(2) 1.0 SB. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Fin > $10 K$). (option).
(4) EW. To voltage control the output pulse width, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rin $>10 K$. (option).
(5) OS. To DC offset the out pulse from 0 to ± 50 volts, apply the required DC potential (o to ± 50 volts) to this terminal.

Fig. 4 a
POWER SUPPLY

Fig. 4b

The AUR-G1-C consists of the following basic modules:

1) AVR-G1-PG pulse generator module
2) AVR-G1-CL clock module
3) +24V power supply board
4) AVR-G1-PS power supply module
5) AVR-G1-PW pulse width module
b) AVR-DL overload module

The modules are interconnected as shown in Fig. 4. The clock module controls the output PRF and the relative delay between the main output and the SYNC outputs. The PG pulse generator modules generate the output pulse. The PS module generates o to +110 volts to power the pulse generator module. The PW module controls the output pulse width. In the event of an instrument malfunction, it is most likely that the rear panel 1. OA SB fuse or some of the output switching elements (SLST) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NDTE: First turn off the prime power. CAUTION: Briefly ground the SLST tabs to discharge the 110 valts power supply potential. The elements may be removed from their sockets by means of a needle nosed pliers. The SLST is a selected VMOS power transistor in a TO 220 package and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SLST switching elements, take care to insure that the short lead (of the three leads) is adjacent to the back of the chassis. If the switching elements are not defective, then the four Phillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:
a) 0.1 us TTL level outputs are observed at pins 2 and 3.
b) The PRF of the outputs can be varied over the range of 10 Hz to 100 kHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 0.1 us to 1.0 us by the DELAY controls.

Schroff 11.11 .92
-EW
-ER

- OS

