AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

ENGINEERING - MANUFACTURING
P.O. BOX 265 OGDENSBURG
NEW YORK 13669 1315) 472-5270

BOX 5120 . STN. "F" OTTAWA. ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

WARFANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanstip under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal \}attenuators, cables. connectors, etc.) should exceed 100 MHz .
2) This unit was specifically designed to drive high impedance loads ($R_{L} \geqslant 100 k$). The unit may fail if operated into low impedance laads (eg. 50 iz) at very wide pulse width (eg. $\geqslant 100$ usec).
3) The sync output channel provides TTL level signals. To avoid overdriving the TFIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel. The TRIG output precedes the main output when the front panel LEAD-LAG switch is in the LEAD pasition. The TRIG output lags the main output when the switch is in the LAG position.
4) The desired output polarity is selected by means of the front panel PDLAFITY switch. With the POLAFITY switch in the F position, the megative output pulse generator is rendered inactive. Likewise, with the FOLARITY switch in the N positiong the positive pulse generator is rendered inactive.
5) The output pulse widths for the positive and negative outputs are contralled by means of the front panel one turn FW contral and by the FW FANGE control. The minimum and maximum FW for each range and the corresponding maximum FRF are as fallows. Note that the unit may fail if operated at duty cycles exceeding the above.

To voltage control the output pulse width within each range, set the rear panel switch in the EXT pasitian and apply 0 to +10 volts between terminal A and ground $\left\{R_{i n}\right.$ $>10 K$). (option).
6) To obtain a stable output display the FRF control on the front panel should be set midrange. The front panel TFig toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by rotating the FRF and PRF FINE controls.
7) The output pulse amplitudes for the positive and negative outputs are controlled by means of the front panel ten turn AMP controls. To voltage control the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (FixN > 1OK). (option).
8) An external clock may be used to control the output FRF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 usec (approk=) TTL level pulse to the TRIG ENC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the SYNC qutput.
9) The DELAY control contrals the relative delay between the reference autput pulse provided at the TRIG output and the main output. This delay is variable over the range of 0.1 usec to 1 sec. The TRIG output precedes the main output when the LEAD-LAG switch is in the LEAD position and lags when the switch is in the LAG position.

MIN	MAX
0.1 usec	1.0 usec
1.0 usec	10 usec
10 usec	100 usec
100 usec	1 msec
1 msec	10 msec
10 msec	100 msec
100 msec	1 sec

Note that the DELAY contral alsa functions when the unit is triggered externally.
units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn $0 N$ (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overioad condition has been removed, the instrument wili turn on and resume normal operation. Overload conditions may be removed by:

1) Reducing PRF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Removing output load short circuit (if any)

Fig. 2 FRONT PANEL CONTROLS

ON-DFF Switch. Applies basic prime power to all stages. PRF Control. Varies PRF from 0.1 Hz to 1 kHz as follows:

| Range 1 | 0.1 | to 1 | Hz |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Range 2 | 1 | to 10 | Hz |
| Range 3 | 10 | to 100 | Hz |
| Range 4 | 100 | to 1 | KHz |

DELAY Control. Controls the relative delay between the reference output pulse provided at the TFIG output (4) the main output (5) and (6). This delay is variable over the range of 0.1 to about 1 sec . Delay LEADS or LAGS depending on the position of the LEAD-LAG switch.

MIN
MAX

Fiange 1	0.1 usec	1.0 usec
Fange 2	1.0 usec	10 usec
Fange 3	10 usec	100 usec
Range 4	100 usec	1 msec
Fange 5	1 msec	10 msec
Range 6	10 msec	100 msec
Range 7	100 msec	1 sec

TRIG Qutput. This output is used to trigger the scope time base. The output is a TTL level 100 nsec (approx.) pulse capable of driving a fifty ohm load. This output precedes the output at (5) or (6) if the two position LEAD-LAG switch is in the LEAD position. This output follows the output at (5) or (6) if the switch is in the LAG position. The delay range is variable from 0.1 usec to 1 sec. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.

DUT N Connector. BNC connector provides output to a high impedance load ($\geqslant 100 \mathrm{~K}$).

OUT F Connector. ENC connector provides output to a high impedance load (100 K).

FW Control. A one turn control and 7 position range switch which varies the positive output pulse width from 0.1 usec to 1.0 sec. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

		PW min	FW max
Range	1	0.1 usec	1.0 usec
		FFFF max 1 kiHz	FFF max 1 KHz
Fange	2	1.0 usec	10 usec
		PFFF max 1 kHz	PRF max 1 KHz
Range	3	10 4sec	100 usec
		PRF max 1 KHz	PFF max 1 kHz
Range	4	100 usec	1 msec
		PRF max 1 KHz	PFF max 100 Hz
Range	5	1 msec	10 msec
		FFF max 100 Hz	PRF max 10 Hz
Range	6	10 msec	100 msec
		FRF max 10 Hz	PFF max 1 Hz
Range	7	100 msec	1 Sec
		FRF max 1 Hz	FRF max 0.1 Hz

(9) AMP Control. A ten turn control which varies the output pulse amplitude from 0 to $+150 \quad V$ to a high impedance load.
(10) FOLARITY Control. With the switch in the F positiong the negative output pulse generator is rendered inactive. With the switch in the N position, the positive output pulse generator is rendered inactive.
(11) EXT-INT Contral. With this toggle switch in the INT position, the FRF of the AVF unit is controlled via an internal clock which in turn is controlled by the PRF control. With the taggle switch in the EXT pasitions, the AVR unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.
12) AVR units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light oN. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn $0 N$ (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light $O N$) for another 5 seconds. If the overioad condition has been removed, the instrument wili turn on and resume normal operation. Overload conditions may be removed by:

1) Reducing PRF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Removing output load short circuit (if any:

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable pawer cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.25 Amp SB)
(2) 1.0 58. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To valtage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground ($\left.R_{\text {IN }}\right\rangle$ lok). (option).
(4) EW. To voltage control the output pulse width, set the switch in the EXT position and apply 0 to +10 volts between terminal A and graund (Rin > 10K). (option).

Fig. 4 a
POWER SUPPLY

Fig. 4b

The AVR-3-FW-C-PN consists of the following basic modules:

1) AVR-3-PW-PG pulse generator modules (-P and -N)
2) AVR-S-CL clock module
3) +24V power supply board
4) AVR-3-PS-N power supply module
5) AVR-3-PS-P power supply module
6) AVR-3-PW pulse width module

The modules are interconnected as shown in Fig. 4. The clock module controls the output PRF and the relative delay between the main output and the SYNC outputs. The PG pulse generator modules generate the output pulse. The PS-P and PS-N modules generate 0 to ± 150 volts to power the pulse generator module. The PW module controls the output pulse width. In the event of an instrument malfunction, it is most likely that the rear panel 0.5A SE fuse or some of the output switching elements (SL4) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NOTE: First turn off the prime power. The elements may be removed from their sockets by means of a needle nosed pliers. The SL4 is a selected VMDS power transistor in a TO 220 packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4 switching elements, take care to insure that the short lead (of the three leads) is adjacent to the black dot on the chassis. If the switching elements are not defective, then the four Phillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:
a) O. 1 usec TTL level outputs are observed at pins 2 and 3. b) The FRF of the outputs can be varied over the range of 0.1 Hz to 1.0 KHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 0.1 usec ta 1.0 sec by the DELAY controls.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates $+24 V$ DC to power the other modules. If the voltage is less than +24 V , turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7824 output to ground and turn on the prime power. A voltage of +24 valts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.

The AVR-J-FW-C-FN consists of the following basic modules:

1) AVR-J-FW-FG pulse generator modules (-F and $-N$)
2) AVR-J-CL clock module
3) +24V power supply board
4) AVR-S-PS-N power supply module
5) AVR-J-FS-F power supply module
6) AVF-3-PW pulse width module

The modules are interconnected as shown in Fig. 4. The clock module controls the output PRF and the relative delay between the main output and the SYNC outputs. The FG pulse generator modules generate the output pulse. The PS-P and PS-N modules generate 0 to ± 150 volts to power the pulse generator module. The PW module controls the output pulse width. In the event of an instrument malfunction, it is most likely that the rear panel 0.5A SE fuse or some of the output switching elements (SL4) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NDTE: First turn off the prime power. The elements may be removed from their sockets by means of a needle nosed pliers. The SL4 is a selected UMOS power transistor in a T0 220 packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4 switching elements, take care to insure that the short lead (of the three leads) is adjacent to the black dot on the chassis. If the switching elements are not defective, then the four fhillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3.
b) The PRF of the outputs can be varied over the range of 0.1 Hz to 1.0 KHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 0.1 usec to 1.0 sec by the DELAY controls.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates +24 V DC to power the other modules. If the voltage is less than +24 V , turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Salder a 100 ohm 5 watt resistor to the 7824 output to ground and turn on the prime power. A voltage of +24 volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.

Schrobf 05.10.91
$-E W$
-EA

