AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING
P.O. BOX 265

OGDENSBURG NEW YORK 13669 (315)472-5270

BOX 5120. STN. "F" OTTAWA. ONTARIO
CANADA K2C 3H4 TEL: (613) 226-5772
FAX: (613) 226-2802
TELEX: 053-4591

INSTRUCTIONS

MODEL AUR-G4-FN-ATT2-C FULSE GEMERATUF
S.N. :

WARFANTY

Avtech Electrosystems Ltd. warrants products of its manlafacture to be free from defects in material and workmanship under conditions of normal use. If, within ane year after delivery to the original owner, and after prepaid return by the ariginal owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defeetive item. This warranty does not epply to units which have been dissembled, modified or subjected to conditions exceeding the applicatale specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either espressed or implied.

Fig. 1
PULSE GENERATOR TEST ARRANGEMENT

, $50-60 \mathrm{~Hz}$

1) The equipment should be connected in the general fashion shown above. Gince the AVR unit provides an output pulse rise time as low as 10 nsec a fast oscilloscope (at least 50 MHz and preferably 200 NHz should be used to display the waveform.
2) The sync output channel provides TTL level sigmals.
3) The unit provides a square wave output (50\% duty cycle) of the form shown infig. 2. CAUTI口N: This unit is designed to drive a high impedance load (eg. $\mathrm{F}_{\mathrm{L}} \%$ 10k) and may fail if operated into a low-impedance load (eg. 50 ahms).
4) The cutput FFF (or FW) is controlled by the 4 position range switch and one turn PFF comtrol from 0. 1 kHz to 1 MHz (or E msec ta 0.5 usec).
5) The output amplitude is controlled by the one turn amp control (0 ta 200 valts to $100 k$ or larger). Separate AMF controls sand output connectors) are provided for the positive and negative polarities.
6) The FFF is controlled by the internal clock when the INT-EXT switch is in the INT position. With the switch in the INT position and the DELAY switch in the LEAD position, a TTL level coincident replica of the main output pulse is provided at the TFig output. This TTL signal may be used for scope triggering purposes. When the DELAY switch is in the LAG positiong the TFIG output provides a 0.2 usec wide TTL level pulse which is delayed with respect to the rising edge of the output square wave. The ammunt of delay is variable from approximately 100 nsec to 1 msec and is controlled by the 3 position DELAY RANGE switrh and the one turn delay control.
7) The unit may be triggered enternally by setting the INTEXT switch in the EXT position and applying a TTL level 50% duty cycle square wave to the Thig input. The output will then have the same FFF as the THL imput but delayed by approximately 100 resec.
8) The output switching elements may fail if the unit is inadvertertly operated irsto a short circuit or low impedance. The switching elements are easily replaced in the field following the procedure outlined in the REFAIF Section.
9) This unit is protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating inta a low impedance load, the protective circuit will turn the output of the instrument DFF and turn the indicator light ON. The light will stay ON (i.e. output GFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists: the instrument will turn OFF again (i.e. light ON) far another 5 seconds. If the overload condition has been remaved, the instrument will turn on and resurne normal operation. Overload conditions may be removed by:
10) Fieducing FFFF (i.e. switch to a lower range)
11) Femoving output low impedance load (if any)
12) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable cormector assembly.

Fig. 2

(1) DN-DFF Ewitch. Applies basic prime power to all stages.
(2) PRF Control. Varies FRF from 100 Hz to 1 MHz.
(3) AMF Control. Two one turn controle which vary the (3A) output pulse amplitude from o to +200V to look or higher.
(4) OUT. ENC connectors provides outputs to high impedance (4A) loads (100k or higher).
(5) INT-EXT. The FRF is contralled by the internal clack when the INT-EXT switch is in the INT pasition. With the switch in the INT pasitian and the DELAY switch (G) in the LEAD position, a TTL level coincident replica of the main output pulse is provided at the TFIG output (7). This TTL signal may be used for scope triggering purposes. When the DELAY switch (6) is in the LAG position. the TRIG output (7) provides a 0.2 usec wide TTL level pulse which is delayed with respect to the rising edge of the output square wave. The amount of delay is variable from approximately 100 nsec to 1.0 msec and is contralled by the 3 position DELAY FANGE switth and the one turn delay control as follows:

Fiange	MIN	MAX	
1	100 nsec	10 usec	
2	1	usec	100 usec
3	10 usec	1 msec	

(b) DELAY. See (5) above.
(7) TFiG. The unit may be triggered enternally by setting the INT-EXT switch (5) in the EXT pasition and applying a TTL level 50% duty cycle square wave to the TRIG imput. The output will then have the same FFF as the TTL input but delayed by approximately ioo risec. When the INT-EXT switeh (S) is in the INT positions a coincident TTL level replica of the main output is provided at the TFIG output (see 5 above).

Fig. 3
BACK PANEL CONTROLS

(1)
(1) FUSED COMNECTOE, VOLTAEE SELECTOF. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuce (0.5A).
(2) 2.0 SE . This fuse limits the DC prime power supplied to the output stage and will blow in the case of severe overloading.

The AVR-G4-C-FN-ATT2 consists of the following basic modules:

1) AVR-G4-FG pulse generator modules (-F and -W)
2) AVK-G-CL clock madule
3) +24V power supply board
4) AVR-3-PS power supply modules (-P and -N)
5) AVR-DL overload module

In the event of an instrument malfunction, it is most likely that the 2.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that same of the output switching elements (SL22T) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. The cover plate is removed by removing the two 2-56 Fhillips screws. NOTE: First turn off the prime power. CAUTION: Briefly ground the SL22T tabs to discharge the 200 volts power supply potential. The elements may be removed from their sockets by means of a needle nosed pliers after removing the four 2-56 Fhillips screws which attach the small copper heat sirk to the body of the instrument. The SL22T is a selected UMOS power transistor in a 10220 package and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL22T switching elements, take care to insure that the short lead (of the three leads) is adjacent to the back of the chassis. (See following Fig.). The SLZ2T elements are electrically isolated from the small copper heat sink but are bonded to the heat sink using WAKEFIELD TYPE 15s HEAT SINK ADHESIVE.

SL22T HEAT SINKING

sschrobf 11.23 .90

