AVTECH ELECTROSYSTEMS LTD.
NANOSECOND WAVEFORMELECTRONICS SINCE 1975

> P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270
> FAX: (613) $226-2802$

TEL: 1-800-265-6681
FAX: 1-800-561-1970
e-mail: info@avtechpulse.com
http://www.avtechpulse.com

- P.O. BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

INSTRUCTIONS

MODEL AVRF-2-C PULSE GENERATOR

S.N.:

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 613-226-5772 or 1-800-265-6681
Fax: 613-226-2802 or 1-800-561-1970
E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY 2
TABLE OF CONTENTS 3
FIG. 1: PULSE GENERATOR TEST ARRANGEMENT 4
GENERAL OPERATING INSTRUCTIONS 5
FIG. 2: FRONT PANEL CONTROLS 8
FRONT PANEL CONTROLS 9
FIG. 3: BACK PANEL CONTROLS 12
BACK PANEL CONTROLS 13
FIG. 4: SYSTEM BLOCK DIAGRAM (for Non EA, EW Option Units) 14
FIG. 5: POWER SUPPLY 15
TOP COVER REMOVAL AND RACK MOUNTING. 16
PERFORMANCE CHECK SHEET 17

FIG. 1: PULSE GENERATOR TEST ARRANGEMENT

GENERAL OPERATING INSTRUCTIONS

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 500 MHz . CAUTION: This unit requires a 50 Ohm load and it may be damaged if operated into a load other than 50 Ohms.
2) The TRIG output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel. The TRIG output precedes the main output when the front panel ADVANCE-DELAY switch is in the ADVANCE position. The TRIG output lags the main output when the switch is in the DELAY position.
3) The output pulse width is controlled by means of the front panel ten turn PW control and by the PW RANGE control. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding 0.5%.

	PW min	PW max
Range 1	$\begin{gathered} 0.1 \text { us } \\ \text { PRF } \max 1 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 1.0 \text { us } \\ & \text { PRF max } 1 \text { kHz } \end{aligned}$
Range 2	$1.0 \text { us }$ PRF max 1 kHz	10 us PRF max 500 Hz
Range 3	$\begin{gathered} 10 \text { us } \\ \text { PRF } \max 500 \mathrm{~Hz} \end{gathered}$	100 us PRF max 50 Hz

To voltage control the output pulse width within each range, set the rear panel switch in the EXT position and apply 0 to +10 Volts between terminal A and ground ($\mathrm{R}_{\mathrm{IN}} \geq 10 \mathrm{~K}$). (option).
4) To obtain a stable output display the PRF control on the front panel should be set mid range. The front panel TRIG switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by rotating the PRF and PRF FINE controls.
5) The output pulse amplitude is controlled by means of the front panel ten turn AMP control. To voltage control the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 Volts to the A BNC connector ($\mathrm{R}_{\mathbb{N}} \geq 10 \mathrm{~K}$). (option).
6) An external clock may be used to control the output PRF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 50 ns (or wider) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the TRIG output. When triggered externally, the output pulse width is controlled by the front panel PW controls provided the MODE A-B switch is in the A position. The MODE A-B switch is accessed by removing the top cover (by removing the four Phillips screws on the top panel and sliding the top cover back and off). When the MODE A-B switch is in the B position, the output pulse width equals the input trigger pulse width. The unit is shipped with the switch in the A position.
7) For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE PULSE button.
8) The DELAY control controls the relative delay between the reference output pulse provided at the TRIG output and the main output. This delay is variable over the range of 0.1 us to 100 us. The TRIG output precedes the main output when the ADVANCE-DELAY switch is in the ADVANCE position and lags when the switch is in the DELAY position.

	MIN	MAX
Range 1	0.1 us	1.0 us
Range 2	1.0 us	10 us
Range 3	10 us	100 us

9) AVRF-C units with a serial number higher than 5600 are protected by an automatic average power overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:
10) Reducing PRF (i.e. switch to a lower range)
11) Reducing pulse width (i.e. switch to a lower range)
12) Reducing the output amplitude

Note that the overload light may illuminate when the prime power is applied. The light will extinguish after a few seconds and the unit will then function normally.
10) Units with a serial number higher than 7400 are protected against shortcircuited load conditions by an automatic circuit which senses the load current and inhibits triggering of the output stage if the peak load current exceeds 5.0 Amperes.
11) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector-cable connector assembly.
12) For additional assistance:

Tel: (613) 226-5772
Fax: (613) 226-2802
Email: info@avtechpulse.com

FIG. 2: FRONT PANEL CONTROLS

FRONT PANEL CONTROLS

1) ON-OFF Switch. Applies basic prime power to all stages.
2) PRF Control. Varies PRF from 1 Hz to 1 kHz as follows:

> 1 Hz to 10 Hz
> 10 Hz to 100 Hz 100 Hz to 1 kHz
3) DELAY Control. Controls the relative delay between the reference output pulse provided at the TRIG output (4) and the main output (5). This delay is variable over the range of 0.1 to about 100 us. Delay LEADS or LAGS depending on the position of the ADVANCE-DELAY switch.

	MIN	MAX
Range 1	0.1 us	1.0 us
Range 2	1.0 us	10 us
Range 3	10 us	100 us

4) TRIG Output. This output is used to trigger the scope time base. The output is a TTL level 100 ns (approx.) pulse capable of driving a fifty Ohm load. This output precedes the output at (5) if the two position ADVANCE- DELAY switch is in the ADVANCE position. This output follows the output at (5) if the switch is in the DELAY position. The delay range is variable from 0.1 us to 100 us. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
5) OUT Connector. BNC connector provides output to a 50 Ohm load (up to 4 Watts).
6) PW Control. A ten turn control and 3 position range switch which varies the positive output pulse width from 0.1 us to 100 us. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding 0.5%.

	PW min	PW max
Range 1	0.1 us	1.0 us
	PRF max 1 kHz	PRF max 1 kHz
Range 2	1.0 us	10 us
	PRF max 1 kHz	PRF max 500 Hz
Range 3	10 us	100 us
	PRF max 500 Hz	PRF max 50 Hz

7) AMP Control. A ten turn control which varies the output pulse amplitude from 0 to 200 V to $\mathrm{R}_{\mathrm{L}}=50$ Ohms.
8) INT-EXT-MAN Control. With this toggle switch in the INT position, the PRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF control. With the toggle switch in the EXT position, the AVR unit requires a 0.2 us TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source. When triggered externally, the output pulse width is controlled by the front panel PW controls provided the MODE A-B switch is in the A position. The MODE A-B switch is accessed by removing the top cover (by removing the four Phillips screws on the top panel and sliding the top cover back and off). When the MODE A-B switch is in the B position, the output pulse width equals the input trigger pulse width. The unit is shipped with the switch in the A position.
9) SINGLE PULSE. For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE PULSE button.
10) OVERLOAD INDICATOR. AVRF-C units with a serial number higher than 5600 are protected by an automatic average power overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:
11) Reducing PRF (i.e. switch to a lower range)
12) Reducing pulse width (i.e. switch to a lower range)
13) Reducing the output amplitude

Note the overload light may indicate when the prime power is applied. The light will extinguish after a few seconds and the unit will then operate normally.

FIG. 3: BACK PANEL CONTROLS

BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A SB).
(2) 1.0A SB. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 Volts between the BNC terminal A and ground ($R_{\mathbb{I N}} \geq 10 \mathrm{~K}$). (option).
(4) EW. To voltage control the output pulse width, set the switch in the EXT position and apply 0 to +10 Volts between the $B N C$ terminal A and ground ($\mathrm{R}_{\mathrm{IN}} \geq 10 \mathrm{~K}$). (option).

FIG. 4: SYSTEM BLOCK DIAGRAM
(for Non EA, EW Option Units)

FIG. 5: POWER SUPPLY

TOP COVER REMOVAL AND RACK MOUNTING

1) The interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).
