AVTECH ELECTROSYSTEMSLTD.

NANOSECOND WAVEFORM ELECTRONICS
Engineering - MANUFACTURING
P.O. BOX 265 OGDENSBURG NEW YORK 13669
(315) 472.5270

BOX 5120 STN. "F" Y OTTAWA, ONTARIO
CANADA K2C 3 H 4 (613) 226.5772

TELEX 053.4591

INSTRULTIONS

WARFRANTY

Avtech Electrosystens Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the estent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

1) The equipment should be connected in the general fashion shown above. A scope with a bandwidth of at least 50 MHz should be used to view output B while a scope bandwidth of at least 500 MHz is required for viewing output A.
2) Both output amplitudes are fixed at -250 valts (to 50 ohms) : Care should be taken to insure that the scope. the load pesistor and any attenuators used can withstand this high voltage.
3) The output pulse width for butput A is fixed at 50 nsec. The output pulse width for output B is variathe from 100 nsec to 100 usec using the front panel FW B and $F W E$ FIME contrals.
4) The output FRF is equal to the input FFF applied to the IN A or IN E ports. Dutput A will operate safely ta PRF as high as 5 KHz, output E will operate to fRF as high as 50 Hz for maximum output pulse widths (100 usec) and to PRF of 1 KHz with minimum output pulse width. Note that both A and E outputs may fail if above PRF specifications are exceeded.
5) Output A is designed to operate into a fifty ohm load. The following arrangement is recommended when the AVFL-ITTI unit is used to pulse a biased high impedance 1 oad.

6) Dutput B will operate into a load impedance in the range of 50 ohms to an open circuit.
7) Both outputs may be delayed by 5 to 20 usec by applying 0 to $+10 V$ (Rin > 10K) to the back panel DELAY terminals and by placing the front panel delay control switch in the IN position. With the delay switch in the OUT position, the fired delay for the A output is about 300 nsec while the fixed delay for the B output is about 100 nsec.
8) The output switching elements (SL4) in output B will probably fail if the output of the unit is accidentally short-circuited or if the unit is operated at high output pulse width - high FFF combinations. The switching elements are easily replaced following the instructions given in the REFAIF Section. The output switching elements in output A are also easily replaced.

FRONT PANEL CONTROLS

(1) ON-DFF Switch. Applies prime power to all stages.
(2) IN A. Input trigger for A output applied here (TTL levels 0.1 to 1.0 usec).
(3) IN B. Input trigger for B output applied here (TTL levels 0.1 to 1.0 usec). IN A and $I N B$ may be connected in parallel.
(4) DELAY IN-DUT. With switch in the IN position the relative delay between the IN trigger pulse and output A (or B) is variable from 5 to 20 usec by applying 0 to +10 V to the back panel DELAY terminals. With the switch in the OUT position, the relative delay is fired at about 300 nsec for the A output and 100 nsec for the B output.
(5) FW-E RANGE Switch. In position 1 the B output pulse
(6) Width is variable over the range of about 0.1 to 1.0 usec. In position 2 the B output pulse width is variable over the range of about 1.0 to 10 usec while in the 3 position the output pulse width is variable from about 10 usec to 100 usec.
(7) OUT Connector. ENC connectors used to connect output of A and B to rated load.
(8) A-E OUTFUT Switch. With switch in the A position, pulse generator A is connected to the output connector (7) and the B pulse generator $i \leq$ disabled. With switch in the B position, pulse generator B is connected to the output connector (7) and the A pulse generator is disabled.

BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) To delay output A or B from 5 to 20 usec, set front panel delay switch in IN position and apply o to +10 V to delay terminals (Kin > 10k).

1) WAFNING: Eefore attempting any repairs note that potentials as high as 310 volts are employed in the chassis structure.
2) The pulse generator $i s$ constructed from the following subsystems or modules:
a) Metal chassis
b) A pulse generator module (AVL-2-PG-A)
c) Delay ine module (AVRL-1-DL)
d) Timing module (AVL-2-T)
e) Fower supply module (AVL-2-PS)
f) B pulse generator module (AVRL-ITT1-B-FG)
g) Delay module (AVFL-ITT1-DL)
h) $+24 V$ power supply board

The modules are interconnected as shown in the following diagram.
3) If no output is provided by the A output; turn off the prime power and remove the four Fhillips screws on the back panel. The top cover may then be slid off. Turn on the prime power and apply a scope probe or voltmeter to the outer case of either of the SLJ switching elements. A valtage of about $+\mathbb{3} 10$ volts should be indicated. If the voltage is substantially less than s10才 then one of the switching elements has probably failed. Turn off the prime power and remove one of the transistors by removing the two $2-56$ screws which secure the transistor in its socket. Full the transistor out of the socket. With the unit un-triggered, turn on the prime power supply and measure the voltage from the case of the remaining transistor to ground. If this voltage is about 310 volts then the transistor which was removed is defective and should be replaced. If the valtage which is measured is less than Jio volts then the transistor still in position is defective and should be replaced. Note that the two transistors are completely interchargeable (Order Avtech Fart Na. SLZ. .
4) If no output is provided by the B output, then it is most likely that the SL4 switching elements in the B output stage have been damaged and should be replaced. Turn off the prime power and remove the instrument bottom panel cover plate thereby exposing the SL4 switching elements. The SL4 elements may be removed from their sockets using a pair of needle nosed pliers. Before attempting this, first insure that the prime power is off and also briefly ground the metal tabs on the sL4 elements to the chassis as the bypass capacitors
may be charged to -260 volts. Replacement SL4 units must be ordered directly from Avtech. When reinstalling the SL4 units in their sockets, insure that the shortest of the three terminals is adjacent to the black dot on the AVRL chassis.

The AVRL-ITT1 consists of the six standard modules and a power supply board which supplies +24 volts (600 mA max) to the modules. In the event that the unit malfunctions, remove the instrument top cover: thereby exposing the modules. Measure the voltage at the +24 V pin of the FS module. If this voltage is substantially less than +24 volts, unsolder the 1 ine connecting the power supply board output and connect a 50 ohm 10 W lad to the power supply output. The valtage across this load should be about +24 V DC. If this voltage is substantially less than 24 valts the power supply board is defective and should be repaired or replaced. If the voltage is near $+24 V$ then see instructions in preceding section.

POWER SUPPLY BOARD

bchroff

