diff options
Diffstat (limited to 'arch/x86/lib')
-rw-r--r-- | arch/x86/lib/Makefile | 1 | ||||
-rw-r--r-- | arch/x86/lib/init_helpers.c | 27 | ||||
-rw-r--r-- | arch/x86/lib/ramtest.c | 79 | ||||
-rw-r--r-- | arch/x86/lib/tsc_timer.c | 285 |
4 files changed, 358 insertions, 34 deletions
diff --git a/arch/x86/lib/Makefile b/arch/x86/lib/Makefile index 25b672a0c1..e146e646cd 100644 --- a/arch/x86/lib/Makefile +++ b/arch/x86/lib/Makefile @@ -15,6 +15,7 @@ obj-$(CONFIG_SYS_PCAT_TIMER) += pcat_timer.o obj-$(CONFIG_PCI) += pci_type1.o obj-y += relocate.o obj-y += physmem.o +obj-$(CONFIG_X86_RAMTEST) += ramtest.o obj-y += string.o obj-$(CONFIG_SYS_X86_TSC_TIMER) += tsc_timer.o obj-$(CONFIG_VIDEO_VGA) += video.o diff --git a/arch/x86/lib/init_helpers.c b/arch/x86/lib/init_helpers.c index b5d937feb3..be4eb12c53 100644 --- a/arch/x86/lib/init_helpers.c +++ b/arch/x86/lib/init_helpers.c @@ -87,30 +87,3 @@ int init_func_spi(void) puts("ready\n"); return 0; } - -int find_fdt(void) -{ -#ifdef CONFIG_OF_EMBED - /* Get a pointer to the FDT */ - gd->fdt_blob = __dtb_dt_begin; -#elif defined CONFIG_OF_SEPARATE - /* FDT is at end of image */ - gd->fdt_blob = (ulong *)&_end; -#endif - /* Allow the early environment to override the fdt address */ - gd->fdt_blob = (void *)getenv_ulong("fdtcontroladdr", 16, - (uintptr_t)gd->fdt_blob); - - return 0; -} - -int prepare_fdt(void) -{ - /* For now, put this check after the console is ready */ - if (fdtdec_prepare_fdt()) { - panic("** CONFIG_OF_CONTROL defined but no FDT - please see " - "doc/README.fdt-control"); - } - - return 0; -} diff --git a/arch/x86/lib/ramtest.c b/arch/x86/lib/ramtest.c new file mode 100644 index 0000000000..c21be03848 --- /dev/null +++ b/arch/x86/lib/ramtest.c @@ -0,0 +1,79 @@ +/* + * Copyright (c) 2014 Google, Inc + * + * From Coreboot src/lib/ramtest.c + * + * SPDX-License-Identifier: GPL-2.0 + */ + +#include <common.h> +#include <asm/io.h> +#include <asm/post.h> + +static void write_phys(unsigned long addr, u32 value) +{ +#if CONFIG_SSE2 + asm volatile( + "movnti %1, (%0)" + : /* outputs */ + : "r" (addr), "r" (value) /* inputs */ + : /* clobbers */ + ); +#else + writel(value, addr); +#endif +} + +static u32 read_phys(unsigned long addr) +{ + return readl(addr); +} + +static void phys_memory_barrier(void) +{ +#if CONFIG_SSE2 + /* Needed for movnti */ + asm volatile( + "sfence" + : + : + : "memory" + ); +#else + asm volatile("" + : + : + : "memory"); +#endif +} + +void quick_ram_check(void) +{ + int fail = 0; + u32 backup; + + backup = read_phys(CONFIG_RAMBASE); + write_phys(CONFIG_RAMBASE, 0x55555555); + phys_memory_barrier(); + if (read_phys(CONFIG_RAMBASE) != 0x55555555) + fail = 1; + write_phys(CONFIG_RAMBASE, 0xaaaaaaaa); + phys_memory_barrier(); + if (read_phys(CONFIG_RAMBASE) != 0xaaaaaaaa) + fail = 1; + write_phys(CONFIG_RAMBASE, 0x00000000); + phys_memory_barrier(); + if (read_phys(CONFIG_RAMBASE) != 0x00000000) + fail = 1; + write_phys(CONFIG_RAMBASE, 0xffffffff); + phys_memory_barrier(); + if (read_phys(CONFIG_RAMBASE) != 0xffffffff) + fail = 1; + + write_phys(CONFIG_RAMBASE, backup); + if (fail) { + post_code(POST_RAM_FAILURE); + panic("RAM INIT FAILURE!\n"); + } + phys_memory_barrier(); +} diff --git a/arch/x86/lib/tsc_timer.c b/arch/x86/lib/tsc_timer.c index 8b38702ef5..fb9afed18f 100644 --- a/arch/x86/lib/tsc_timer.c +++ b/arch/x86/lib/tsc_timer.c @@ -1,6 +1,9 @@ /* * Copyright (c) 2012 The Chromium OS Authors. * + * TSC calibration codes are adapted from Linux kernel + * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c + * * SPDX-License-Identifier: GPL-2.0+ */ @@ -12,8 +15,269 @@ #include <asm/msr.h> #include <asm/u-boot-x86.h> +/* CPU reference clock frequency: in KHz */ +#define FREQ_83 83200 +#define FREQ_100 99840 +#define FREQ_133 133200 +#define FREQ_166 166400 + +#define MAX_NUM_FREQS 8 + DECLARE_GLOBAL_DATA_PTR; +/* + * According to Intel 64 and IA-32 System Programming Guide, + * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be + * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40]. + * Unfortunately some Intel Atom SoCs aren't quite compliant to this, + * so we need manually differentiate SoC families. This is what the + * field msr_plat does. + */ +struct freq_desc { + u8 x86_family; /* CPU family */ + u8 x86_model; /* model */ + /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */ + u8 msr_plat; + u32 freqs[MAX_NUM_FREQS]; +}; + +static struct freq_desc freq_desc_tables[] = { + /* PNW */ + { 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } }, + /* CLV+ */ + { 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } }, + /* TNG */ + { 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } }, + /* VLV2 */ + { 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } }, + /* Ivybridge */ + { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } }, + /* ANN */ + { 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } }, +}; + +static int match_cpu(u8 family, u8 model) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) { + if ((family == freq_desc_tables[i].x86_family) && + (model == freq_desc_tables[i].x86_model)) + return i; + } + + return -1; +} + +/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */ +#define id_to_freq(cpu_index, freq_id) \ + (freq_desc_tables[cpu_index].freqs[freq_id]) + +/* + * Do MSR calibration only for known/supported CPUs. + * + * Returns the calibration value or 0 if MSR calibration failed. + */ +static unsigned long try_msr_calibrate_tsc(void) +{ + u32 lo, hi, ratio, freq_id, freq; + unsigned long res; + int cpu_index; + + cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model); + if (cpu_index < 0) + return 0; + + if (freq_desc_tables[cpu_index].msr_plat) { + rdmsr(MSR_PLATFORM_INFO, lo, hi); + ratio = (lo >> 8) & 0x1f; + } else { + rdmsr(MSR_IA32_PERF_STATUS, lo, hi); + ratio = (hi >> 8) & 0x1f; + } + debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio); + + if (!ratio) + goto fail; + + if (freq_desc_tables[cpu_index].msr_plat == 2) { + /* TODO: Figure out how best to deal with this */ + freq = FREQ_100; + debug("Using frequency: %u KHz\n", freq); + } else { + /* Get FSB FREQ ID */ + rdmsr(MSR_FSB_FREQ, lo, hi); + freq_id = lo & 0x7; + freq = id_to_freq(cpu_index, freq_id); + debug("Resolved frequency ID: %u, frequency: %u KHz\n", + freq_id, freq); + } + if (!freq) + goto fail; + + /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */ + res = freq * ratio / 1000; + debug("TSC runs at %lu MHz\n", res); + + return res; + +fail: + debug("Fast TSC calibration using MSR failed\n"); + return 0; +} + +/* + * This reads the current MSB of the PIT counter, and + * checks if we are running on sufficiently fast and + * non-virtualized hardware. + * + * Our expectations are: + * + * - the PIT is running at roughly 1.19MHz + * + * - each IO is going to take about 1us on real hardware, + * but we allow it to be much faster (by a factor of 10) or + * _slightly_ slower (ie we allow up to a 2us read+counter + * update - anything else implies a unacceptably slow CPU + * or PIT for the fast calibration to work. + * + * - with 256 PIT ticks to read the value, we have 214us to + * see the same MSB (and overhead like doing a single TSC + * read per MSB value etc). + * + * - We're doing 2 reads per loop (LSB, MSB), and we expect + * them each to take about a microsecond on real hardware. + * So we expect a count value of around 100. But we'll be + * generous, and accept anything over 50. + * + * - if the PIT is stuck, and we see *many* more reads, we + * return early (and the next caller of pit_expect_msb() + * then consider it a failure when they don't see the + * next expected value). + * + * These expectations mean that we know that we have seen the + * transition from one expected value to another with a fairly + * high accuracy, and we didn't miss any events. We can thus + * use the TSC value at the transitions to calculate a pretty + * good value for the TSC frequencty. + */ +static inline int pit_verify_msb(unsigned char val) +{ + /* Ignore LSB */ + inb(0x42); + return inb(0x42) == val; +} + +static inline int pit_expect_msb(unsigned char val, u64 *tscp, + unsigned long *deltap) +{ + int count; + u64 tsc = 0, prev_tsc = 0; + + for (count = 0; count < 50000; count++) { + if (!pit_verify_msb(val)) + break; + prev_tsc = tsc; + tsc = rdtsc(); + } + *deltap = rdtsc() - prev_tsc; + *tscp = tsc; + + /* + * We require _some_ success, but the quality control + * will be based on the error terms on the TSC values. + */ + return count > 5; +} + +/* + * How many MSB values do we want to see? We aim for + * a maximum error rate of 500ppm (in practice the + * real error is much smaller), but refuse to spend + * more than 50ms on it. + */ +#define MAX_QUICK_PIT_MS 50 +#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) + +static unsigned long quick_pit_calibrate(void) +{ + int i; + u64 tsc, delta; + unsigned long d1, d2; + + /* Set the Gate high, disable speaker */ + outb((inb(0x61) & ~0x02) | 0x01, 0x61); + + /* + * Counter 2, mode 0 (one-shot), binary count + * + * NOTE! Mode 2 decrements by two (and then the + * output is flipped each time, giving the same + * final output frequency as a decrement-by-one), + * so mode 0 is much better when looking at the + * individual counts. + */ + outb(0xb0, 0x43); + + /* Start at 0xffff */ + outb(0xff, 0x42); + outb(0xff, 0x42); + + /* + * The PIT starts counting at the next edge, so we + * need to delay for a microsecond. The easiest way + * to do that is to just read back the 16-bit counter + * once from the PIT. + */ + pit_verify_msb(0); + + if (pit_expect_msb(0xff, &tsc, &d1)) { + for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { + if (!pit_expect_msb(0xff-i, &delta, &d2)) + break; + + /* + * Iterate until the error is less than 500 ppm + */ + delta -= tsc; + if (d1+d2 >= delta >> 11) + continue; + + /* + * Check the PIT one more time to verify that + * all TSC reads were stable wrt the PIT. + * + * This also guarantees serialization of the + * last cycle read ('d2') in pit_expect_msb. + */ + if (!pit_verify_msb(0xfe - i)) + break; + goto success; + } + } + debug("Fast TSC calibration failed\n"); + return 0; + +success: + /* + * Ok, if we get here, then we've seen the + * MSB of the PIT decrement 'i' times, and the + * error has shrunk to less than 500 ppm. + * + * As a result, we can depend on there not being + * any odd delays anywhere, and the TSC reads are + * reliable (within the error). + * + * kHz = ticks / time-in-seconds / 1000; + * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 + * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) + */ + delta *= PIT_TICK_RATE; + delta /= (i*256*1000); + debug("Fast TSC calibration using PIT\n"); + return delta / 1000; +} + void timer_set_base(u64 base) { gd->arch.tsc_base = base; @@ -34,17 +298,24 @@ u64 __attribute__((no_instrument_function)) get_ticks(void) return now_tick - gd->arch.tsc_base; } -#define PLATFORM_INFO_MSR 0xce - /* Get the speed of the TSC timer in MHz */ unsigned __attribute__((no_instrument_function)) long get_tbclk_mhz(void) { - u32 ratio; - u64 platform_info = native_read_msr(PLATFORM_INFO_MSR); + unsigned long fast_calibrate; + + if (gd->arch.tsc_mhz) + return gd->arch.tsc_mhz; + + fast_calibrate = try_msr_calibrate_tsc(); + if (!fast_calibrate) { + + fast_calibrate = quick_pit_calibrate(); + if (!fast_calibrate) + panic("TSC frequency is ZERO"); + } - /* 100MHz times Max Non Turbo ratio */ - ratio = (platform_info >> 8) & 0xff; - return 100 * ratio; + gd->arch.tsc_mhz = fast_calibrate; + return fast_calibrate; } unsigned long get_tbclk(void) |