summaryrefslogtreecommitdiff
path: root/board/sacsng/sacsng.c
diff options
context:
space:
mode:
Diffstat (limited to 'board/sacsng/sacsng.c')
-rw-r--r--board/sacsng/sacsng.c1329
1 files changed, 663 insertions, 666 deletions
diff --git a/board/sacsng/sacsng.c b/board/sacsng/sacsng.c
index 61cab87035..09f59a0f0d 100644
--- a/board/sacsng/sacsng.c
+++ b/board/sacsng/sacsng.c
@@ -39,7 +39,7 @@ extern void eth_loopback_test(void);
#endif /* CONFIG_ETHER_LOOPBACK_TEST */
#include "clkinit.h"
-#include "ioconfig.h" /* I/O configuration table */
+#include "ioconfig.h" /* I/O configuration table */
/*
* PBI Page Based Interleaving
@@ -61,88 +61,86 @@ extern void eth_loopback_test(void);
/*
* ADC/DAC Defines:
*/
-#define INITIAL_SAMPLE_RATE 10016 /* Initial Daq sample rate */
-#define INITIAL_RIGHT_JUST 0 /* Initial DAC right justification */
-#define INITIAL_MCLK_DIVIDE 0 /* Initial MCLK Divide */
-#define INITIAL_SAMPLE_64X 1 /* Initial 64x clocking mode */
-#define INITIAL_SAMPLE_128X 0 /* Initial 128x clocking mode */
+#define INITIAL_SAMPLE_RATE 10016 /* Initial Daq sample rate */
+#define INITIAL_RIGHT_JUST 0 /* Initial DAC right justification */
+#define INITIAL_MCLK_DIVIDE 0 /* Initial MCLK Divide */
+#define INITIAL_SAMPLE_64X 1 /* Initial 64x clocking mode */
+#define INITIAL_SAMPLE_128X 0 /* Initial 128x clocking mode */
/*
* ADC Defines:
*/
-#define I2C_ADC_1_ADDR 0x0E /* I2C Address of the ADC #1 */
-#define I2C_ADC_2_ADDR 0x0F /* I2C Address of the ADC #2 */
+#define I2C_ADC_1_ADDR 0x0E /* I2C Address of the ADC #1 */
+#define I2C_ADC_2_ADDR 0x0F /* I2C Address of the ADC #2 */
-#define ADC_SDATA1_MASK 0x00020000 /* PA14 - CH12SDATA_PU */
-#define ADC_SDATA2_MASK 0x00010000 /* PA15 - CH34SDATA_PU */
+#define ADC_SDATA1_MASK 0x00020000 /* PA14 - CH12SDATA_PU */
+#define ADC_SDATA2_MASK 0x00010000 /* PA15 - CH34SDATA_PU */
-#define ADC_VREF_CAP 100 /* VREF capacitor in uF */
-#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */
-#define ADC_SDATA_DELAY 100 /* ADC SDATA release delay in usec */
+#define ADC_VREF_CAP 100 /* VREF capacitor in uF */
+#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */
+#define ADC_SDATA_DELAY 100 /* ADC SDATA release delay in usec */
#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500)
- /* Wait at least 4100 LRCLK's */
-
-#define ADC_REG1_FRAME_START 0x80 /* Frame start */
-#define ADC_REG1_GROUND_CAL 0x40 /* Ground calibration enable */
-#define ADC_REG1_ANA_MOD_PDOWN 0x20 /* Analog modulator section in power down */
-#define ADC_REG1_DIG_MOD_PDOWN 0x10 /* Digital modulator section in power down */
-
-#define ADC_REG2_128x 0x80 /* Oversample at 128x */
-#define ADC_REG2_CAL 0x40 /* System calibration enable */
-#define ADC_REG2_CHANGE_SIGN 0x20 /* Change sign enable */
-#define ADC_REG2_LR_DISABLE 0x10 /* Left/Right output disable */
-#define ADC_REG2_HIGH_PASS_DIS 0x08 /* High pass filter disable */
-#define ADC_REG2_SLAVE_MODE 0x04 /* Slave mode */
-#define ADC_REG2_DFS 0x02 /* Digital format select */
-#define ADC_REG2_MUTE 0x01 /* Mute */
-
-#define ADC_REG7_ADDR_ENABLE 0x80 /* Address enable */
-#define ADC_REG7_PEAK_ENABLE 0x40 /* Peak enable */
-#define ADC_REG7_PEAK_UPDATE 0x20 /* Peak update */
-#define ADC_REG7_PEAK_FORMAT 0x10 /* Peak display format */
-#define ADC_REG7_DIG_FILT_PDOWN 0x04 /* Digital filter power down enable */
-#define ADC_REG7_FIR2_IN_EN 0x02 /* External FIR2 input enable */
-#define ADC_REG7_PSYCHO_EN 0x01 /* External pyscho filter input enable */
+ /* Wait at least 4100 LRCLK's */
+
+#define ADC_REG1_FRAME_START 0x80 /* Frame start */
+#define ADC_REG1_GROUND_CAL 0x40 /* Ground calibration enable */
+#define ADC_REG1_ANA_MOD_PDOWN 0x20 /* Analog modulator section in power down */
+#define ADC_REG1_DIG_MOD_PDOWN 0x10 /* Digital modulator section in power down */
+
+#define ADC_REG2_128x 0x80 /* Oversample at 128x */
+#define ADC_REG2_CAL 0x40 /* System calibration enable */
+#define ADC_REG2_CHANGE_SIGN 0x20 /* Change sign enable */
+#define ADC_REG2_LR_DISABLE 0x10 /* Left/Right output disable */
+#define ADC_REG2_HIGH_PASS_DIS 0x08 /* High pass filter disable */
+#define ADC_REG2_SLAVE_MODE 0x04 /* Slave mode */
+#define ADC_REG2_DFS 0x02 /* Digital format select */
+#define ADC_REG2_MUTE 0x01 /* Mute */
+
+#define ADC_REG7_ADDR_ENABLE 0x80 /* Address enable */
+#define ADC_REG7_PEAK_ENABLE 0x40 /* Peak enable */
+#define ADC_REG7_PEAK_UPDATE 0x20 /* Peak update */
+#define ADC_REG7_PEAK_FORMAT 0x10 /* Peak display format */
+#define ADC_REG7_DIG_FILT_PDOWN 0x04 /* Digital filter power down enable */
+#define ADC_REG7_FIR2_IN_EN 0x02 /* External FIR2 input enable */
+#define ADC_REG7_PSYCHO_EN 0x01 /* External pyscho filter input enable */
/*
* DAC Defines:
*/
-#define I2C_DAC_ADDR 0x11 /* I2C Address of the DAC */
+#define I2C_DAC_ADDR 0x11 /* I2C Address of the DAC */
-#define DAC_RST_MASK 0x00008000 /* PA16 - DAC_RST* */
-#define DAC_RESET_DELAY 100 /* DAC reset delay in usec */
-#define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */
+#define DAC_RST_MASK 0x00008000 /* PA16 - DAC_RST* */
+#define DAC_RESET_DELAY 100 /* DAC reset delay in usec */
+#define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */
-#define DAC_REG1_AMUTE 0x80 /* Auto-mute */
+#define DAC_REG1_AMUTE 0x80 /* Auto-mute */
-#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit */
-#define DAC_REG1_I2S_24_BIT (1 << 4) /* Fmt 1: I2S up to 24 bit */
-#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */
-#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */
-#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */
-#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */
+#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit */
+#define DAC_REG1_I2S_24_BIT (1 << 4) /* Fmt 1: I2S up to 24 bit */
+#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */
+#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */
+#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */
+#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */
-#define DAC_REG1_DEM_NO (0 << 2) /* No De-emphasis */
-#define DAC_REG1_DEM_44KHZ (1 << 2) /* 44.1KHz De-emphasis */
-#define DAC_REG1_DEM_48KHZ (2 << 2) /* 48KHz De-emphasis */
-#define DAC_REG1_DEM_32KHZ (3 << 2) /* 32KHz De-emphasis */
+#define DAC_REG1_DEM_NO (0 << 2) /* No De-emphasis */
+#define DAC_REG1_DEM_44KHZ (1 << 2) /* 44.1KHz De-emphasis */
+#define DAC_REG1_DEM_48KHZ (2 << 2) /* 48KHz De-emphasis */
+#define DAC_REG1_DEM_32KHZ (3 << 2) /* 32KHz De-emphasis */
-#define DAC_REG1_SINGLE 0 /* 4- 50KHz sample rate */
-#define DAC_REG1_DOUBLE 1 /* 50-100KHz sample rate */
-#define DAC_REG1_QUAD 2 /* 100-200KHz sample rate */
-#define DAC_REG1_DSD 3 /* Direct Stream Data, DSD */
+#define DAC_REG1_SINGLE 0 /* 4- 50KHz sample rate */
+#define DAC_REG1_DOUBLE 1 /* 50-100KHz sample rate */
+#define DAC_REG1_QUAD 2 /* 100-200KHz sample rate */
+#define DAC_REG1_DSD 3 /* Direct Stream Data, DSD */
-#define DAC_REG5_INVERT_A 0x80 /* Invert channel A */
-#define DAC_REG5_INVERT_B 0x40 /* Invert channel B */
-#define DAC_REG5_I2C_MODE 0x20 /* Control port (I2C) mode */
-#define DAC_REG5_POWER_DOWN 0x10 /* Power down mode */
-#define DAC_REG5_MUTEC_A_B 0x08 /* Mutec A=B */
-#define DAC_REG5_FREEZE 0x04 /* Freeze */
-#define DAC_REG5_MCLK_DIV 0x02 /* MCLK divide by 2 */
-#define DAC_REG5_RESERVED 0x01 /* Reserved */
-
-/* ------------------------------------------------------------------------- */
+#define DAC_REG5_INVERT_A 0x80 /* Invert channel A */
+#define DAC_REG5_INVERT_B 0x40 /* Invert channel B */
+#define DAC_REG5_I2C_MODE 0x20 /* Control port (I2C) mode */
+#define DAC_REG5_POWER_DOWN 0x10 /* Power down mode */
+#define DAC_REG5_MUTEC_A_B 0x08 /* Mutec A=B */
+#define DAC_REG5_FREEZE 0x04 /* Freeze */
+#define DAC_REG5_MCLK_DIV 0x02 /* MCLK divide by 2 */
+#define DAC_REG5_RESERVED 0x01 /* Reserved */
/*
* Check Board Identity:
@@ -150,290 +148,299 @@ extern void eth_loopback_test(void);
int checkboard(void)
{
- printf ("SACSng\n");
+ printf("SACSng\n");
- return 0;
+ return 0;
}
-/* ------------------------------------------------------------------------- */
-
phys_size_t initdram(int board_type)
{
- volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
- volatile memctl8260_t *memctl = &immap->im_memctl;
- volatile uchar c = 0;
- volatile uchar *ramaddr = (uchar *)(CONFIG_SYS_SDRAM_BASE + 0x8);
- uint psdmr = CONFIG_SYS_PSDMR;
- int i;
- uint psrt = 14; /* for no SPD */
- uint chipselects = 1; /* for no SPD */
- uint sdram_size = CONFIG_SYS_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */
- uint or = CONFIG_SYS_OR2_PRELIM; /* for no SPD */
+ volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
+ volatile memctl8260_t *memctl = &immap->im_memctl;
+ volatile uchar c = 0;
+ volatile uchar *ramaddr = (uchar *)(CONFIG_SYS_SDRAM_BASE + 0x8);
+ uint psdmr = CONFIG_SYS_PSDMR;
+ int i;
+ uint psrt = 14; /* for no SPD */
+ uint chipselects = 1; /* for no SPD */
+ uint sdram_size = CONFIG_SYS_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */
+ uint or = CONFIG_SYS_OR2_PRELIM; /* for no SPD */
+
#ifdef SDRAM_SPD_ADDR
- uint data_width;
- uint rows;
- uint banks;
- uint cols;
- uint caslatency;
- uint width;
- uint rowst;
- uint sdam;
- uint bsma;
- uint sda10;
- u_char spd_size;
- u_char data;
- u_char cksum;
- int j;
+ uint data_width;
+ uint rows;
+ uint banks;
+ uint cols;
+ uint caslatency;
+ uint width;
+ uint rowst;
+ uint sdam;
+ uint bsma;
+ uint sda10;
+ u_char spd_size;
+ u_char data;
+ u_char cksum;
+ int j;
#endif
#ifdef SDRAM_SPD_ADDR
- /* Keep the compiler from complaining about potentially uninitialized vars */
- data_width = chipselects = rows = banks = cols = caslatency = psrt = 0;
-
- /*
- * Read the SDRAM SPD EEPROM via I2C.
- */
- i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
- spd_size = data;
- cksum = data;
- for(j = 1; j < 64; j++) { /* read only the checksummed bytes */
- /* note: the I2C address autoincrements when alen == 0 */
- i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
- if(j == 5) chipselects = data & 0x0F;
- else if(j == 6) data_width = data;
- else if(j == 7) data_width |= data << 8;
- else if(j == 3) rows = data & 0x0F;
- else if(j == 4) cols = data & 0x0F;
- else if(j == 12) {
- /*
- * Refresh rate: this assumes the prescaler is set to
- * approximately 1uSec per tick.
- */
- switch(data & 0x7F) {
- default:
- case 0: psrt = 14 ; /* 15.625uS */ break;
- case 1: psrt = 2; /* 3.9uS */ break;
- case 2: psrt = 6; /* 7.8uS */ break;
- case 3: psrt = 29; /* 31.3uS */ break;
- case 4: psrt = 60; /* 62.5uS */ break;
- case 5: psrt = 120; /* 125uS */ break;
- }
- }
- else if(j == 17) banks = data;
- else if(j == 18) {
- caslatency = 3; /* default CL */
+ /* Keep the compiler from complaining about potentially uninitialized vars */
+ data_width = chipselects = rows = banks = cols = caslatency = psrt =
+ 0;
+
+ /*
+ * Read the SDRAM SPD EEPROM via I2C.
+ */
+ i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
+ spd_size = data;
+ cksum = data;
+ for (j = 1; j < 64; j++) { /* read only the checksummed bytes */
+ /* note: the I2C address autoincrements when alen == 0 */
+ i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
+ if (j == 5)
+ chipselects = data & 0x0F;
+ else if (j == 6)
+ data_width = data;
+ else if (j == 7)
+ data_width |= data << 8;
+ else if (j == 3)
+ rows = data & 0x0F;
+ else if (j == 4)
+ cols = data & 0x0F;
+ else if (j == 12) {
+ /*
+ * Refresh rate: this assumes the prescaler is set to
+ * approximately 1uSec per tick.
+ */
+ switch (data & 0x7F) {
+ default:
+ case 0:
+ psrt = 14; /* 15.625uS */
+ break;
+ case 1:
+ psrt = 2; /* 3.9uS */
+ break;
+ case 2:
+ psrt = 6; /* 7.8uS */
+ break;
+ case 3:
+ psrt = 29; /* 31.3uS */
+ break;
+ case 4:
+ psrt = 60; /* 62.5uS */
+ break;
+ case 5:
+ psrt = 120; /* 125uS */
+ break;
+ }
+ } else if (j == 17)
+ banks = data;
+ else if (j == 18) {
+ caslatency = 3; /* default CL */
#if(PESSIMISTIC_SDRAM)
- if((data & 0x04) != 0) caslatency = 3;
- else if((data & 0x02) != 0) caslatency = 2;
- else if((data & 0x01) != 0) caslatency = 1;
+ if ((data & 0x04) != 0)
+ caslatency = 3;
+ else if ((data & 0x02) != 0)
+ caslatency = 2;
+ else if ((data & 0x01) != 0)
+ caslatency = 1;
#else
- if((data & 0x01) != 0) caslatency = 1;
- else if((data & 0x02) != 0) caslatency = 2;
- else if((data & 0x04) != 0) caslatency = 3;
+ if ((data & 0x01) != 0)
+ caslatency = 1;
+ else if ((data & 0x02) != 0)
+ caslatency = 2;
+ else if ((data & 0x04) != 0)
+ caslatency = 3;
#endif
- else {
- printf ("WARNING: Unknown CAS latency 0x%02X, using 3\n",
- data);
- }
+ else {
+ printf("WARNING: Unknown CAS latency 0x%02X, using 3\n", data);
+ }
+ } else if (j == 63) {
+ if (data != cksum) {
+ printf("WARNING: Configuration data checksum failure:" " is 0x%02x, calculated 0x%02x\n", data, cksum);
+ }
+ }
+ cksum += data;
}
- else if(j == 63) {
- if(data != cksum) {
- printf ("WARNING: Configuration data checksum failure:"
- " is 0x%02x, calculated 0x%02x\n",
- data, cksum);
- }
+
+ /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
+ if (caslatency < 2) {
+ printf("WARNING: CL was %d, forcing to 2\n", caslatency);
+ caslatency = 2;
+ }
+ if (rows > 14) {
+ printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n",
+ rows);
+ rows = 14;
+ }
+ if (cols > 11) {
+ printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n",
+ cols);
+ cols = 11;
+ }
+
+ if ((data_width != 64) && (data_width != 72)) {
+ printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
+ data_width);
}
- cksum += data;
- }
-
- /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
- if(caslatency < 2) {
- printf("WARNING: CL was %d, forcing to 2\n", caslatency);
- caslatency = 2;
- }
- if(rows > 14) {
- printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n", rows);
- rows = 14;
- }
- if(cols > 11) {
- printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n", cols);
- cols = 11;
- }
-
- if((data_width != 64) && (data_width != 72))
- {
- printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
- data_width);
- }
- width = 3; /* 2^3 = 8 bytes = 64 bits wide */
- /*
- * Convert banks into log2(banks)
- */
- if (banks == 2) banks = 1;
- else if(banks == 4) banks = 2;
- else if(banks == 8) banks = 3;
-
- sdram_size = 1 << (rows + cols + banks + width);
-
-#if(CONFIG_PBI == 0) /* bank-based interleaving */
- rowst = ((32 - 6) - (rows + cols + width)) * 2;
+ width = 3; /* 2^3 = 8 bytes = 64 bits wide */
+ /*
+ * Convert banks into log2(banks)
+ */
+ if (banks == 2)
+ banks = 1;
+ else if (banks == 4)
+ banks = 2;
+ else if (banks == 8)
+ banks = 3;
+
+ sdram_size = 1 << (rows + cols + banks + width);
+
+#if(CONFIG_PBI == 0) /* bank-based interleaving */
+ rowst = ((32 - 6) - (rows + cols + width)) * 2;
#else
- rowst = 32 - (rows + banks + cols + width);
+ rowst = 32 - (rows + banks + cols + width);
#endif
- or = ~(sdram_size - 1) | /* SDAM address mask */
- ((banks-1) << 13) | /* banks per device */
- (rowst << 9) | /* rowst */
- ((rows - 9) << 6); /* numr */
-
- memctl->memc_or2 = or;
-
- /*
- * SDAM specifies the number of columns that are multiplexed
- * (reference AN2165/D), defined to be (columns - 6) for page
- * interleave, (columns - 8) for bank interleave.
- *
- * BSMA is 14 - max(rows, cols). The bank select lines come
- * into play above the highest "address" line going into the
- * the SDRAM.
- */
-#if(CONFIG_PBI == 0) /* bank-based interleaving */
- sdam = cols - 8;
- bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
- sda10 = sdam + 2;
+ or = ~(sdram_size - 1) | /* SDAM address mask */
+ ((banks - 1) << 13) | /* banks per device */
+ (rowst << 9) | /* rowst */
+ ((rows - 9) << 6); /* numr */
+
+ memctl->memc_or2 = or;
+
+ /*
+ * SDAM specifies the number of columns that are multiplexed
+ * (reference AN2165/D), defined to be (columns - 6) for page
+ * interleave, (columns - 8) for bank interleave.
+ *
+ * BSMA is 14 - max(rows, cols). The bank select lines come
+ * into play above the highest "address" line going into the
+ * the SDRAM.
+ */
+#if(CONFIG_PBI == 0) /* bank-based interleaving */
+ sdam = cols - 8;
+ bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
+ sda10 = sdam + 2;
#else
- sdam = cols - 6;
- bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
- sda10 = sdam;
+ sdam = cols - 6;
+ bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
+ sda10 = sdam;
#endif
#if(PESSIMISTIC_SDRAM)
- psdmr = (CONFIG_PBI |\
- PSDMR_RFEN |\
- PSDMR_RFRC_16_CLK |\
- PSDMR_PRETOACT_8W |\
- PSDMR_ACTTORW_8W |\
- PSDMR_WRC_4C |\
- PSDMR_EAMUX |\
- PSDMR_BUFCMD) |\
- caslatency |\
- ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \
- (sdam << 24) |\
- (bsma << 21) |\
- (sda10 << 18);
+ psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_16_CLK |
+ PSDMR_PRETOACT_8W | PSDMR_ACTTORW_8W | PSDMR_WRC_4C |
+ PSDMR_EAMUX | PSDMR_BUFCMD) | caslatency |
+ ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */
+ (sdam << 24) | (bsma << 21) | (sda10 << 18);
#else
- psdmr = (CONFIG_PBI |\
- PSDMR_RFEN |\
- PSDMR_RFRC_7_CLK |\
- PSDMR_PRETOACT_3W | /* 1 for 7E parts (fast PC-133) */ \
- PSDMR_ACTTORW_2W | /* 1 for 7E parts (fast PC-133) */ \
- PSDMR_WRC_1C | /* 1 clock + 7nSec */
- EAMUX |\
- BUFCMD) |\
- caslatency |\
- ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \
- (sdam << 24) |\
- (bsma << 21) |\
- (sda10 << 18);
+ psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_7_CLK |
+ PSDMR_PRETOACT_3W | /* 1 for 7E parts (fast PC-133) */
+ PSDMR_ACTTORW_2W | /* 1 for 7E parts (fast PC-133) */
+ PSDMR_WRC_1C | /* 1 clock + 7nSec */
+ EAMUX | BUFCMD) |
+ caslatency | ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */
+ (sdam << 24) | (bsma << 21) | (sda10 << 18);
#endif
#endif
- /*
- * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
- *
- * "At system reset, initialization software must set up the
- * programmable parameters in the memory controller banks registers
- * (ORx, BRx, P/LSDMR). After all memory parameters are configured,
- * system software should execute the following initialization sequence
- * for each SDRAM device.
- *
- * 1. Issue a PRECHARGE-ALL-BANKS command
- * 2. Issue eight CBR REFRESH commands
- * 3. Issue a MODE-SET command to initialize the mode register
- *
- * Quote from Micron MT48LC8M16A2 data sheet:
- *
- * "...the SDRAM requires a 100uS delay prior to issuing any
- * command other than a COMMAND INHIBIT or NOP. Starting at some
- * point during this 100uS period and continuing at least through
- * the end of this period, COMMAND INHIBIT or NOP commands should
- * be applied."
- *
- * "Once the 100uS delay has been satisfied with at least one COMMAND
- * INHIBIT or NOP command having been applied, a /PRECHARGE command/
- * should be applied. All banks must then be precharged, thereby
- * placing the device in the all banks idle state."
- *
- * "Once in the idle state, /two/ AUTO REFRESH cycles must be
- * performed. After the AUTO REFRESH cycles are complete, the
- * SDRAM is ready for mode register programming."
- *
- * (/emphasis/ mine, gvb)
- *
- * The way I interpret this, Micron start up sequence is:
- * 1. Issue a PRECHARGE-BANK command (initial precharge)
- * 2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
- * 3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
- * 4. Issue a MODE-SET command to initialize the mode register
- *
- * --------
- *
- * The initial commands are executed by setting P/LSDMR[OP] and
- * accessing the SDRAM with a single-byte transaction."
- *
- * The appropriate BRx/ORx registers have already been set when we
- * get here. The SDRAM can be accessed at the address CONFIG_SYS_SDRAM_BASE.
- */
-
- memctl->memc_mptpr = CONFIG_SYS_MPTPR;
- memctl->memc_psrt = psrt;
-
- memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
- *ramaddr = c;
-
- memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
- for (i = 0; i < 8; i++)
- *ramaddr = c;
-
- memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
- *ramaddr = c;
-
- memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
- *ramaddr = c;
-
- /*
- * Do it a second time for the second set of chips if the DIMM has
- * two chip selects (double sided).
- */
- if(chipselects > 1) {
- ramaddr += sdram_size;
+ /*
+ * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
+ *
+ * "At system reset, initialization software must set up the
+ * programmable parameters in the memory controller banks registers
+ * (ORx, BRx, P/LSDMR). After all memory parameters are configured,
+ * system software should execute the following initialization sequence
+ * for each SDRAM device.
+ *
+ * 1. Issue a PRECHARGE-ALL-BANKS command
+ * 2. Issue eight CBR REFRESH commands
+ * 3. Issue a MODE-SET command to initialize the mode register
+ *
+ * Quote from Micron MT48LC8M16A2 data sheet:
+ *
+ * "...the SDRAM requires a 100uS delay prior to issuing any
+ * command other than a COMMAND INHIBIT or NOP. Starting at some
+ * point during this 100uS period and continuing at least through
+ * the end of this period, COMMAND INHIBIT or NOP commands should
+ * be applied."
+ *
+ * "Once the 100uS delay has been satisfied with at least one COMMAND
+ * INHIBIT or NOP command having been applied, a /PRECHARGE command/
+ * should be applied. All banks must then be precharged, thereby
+ * placing the device in the all banks idle state."
+ *
+ * "Once in the idle state, /two/ AUTO REFRESH cycles must be
+ * performed. After the AUTO REFRESH cycles are complete, the
+ * SDRAM is ready for mode register programming."
+ *
+ * (/emphasis/ mine, gvb)
+ *
+ * The way I interpret this, Micron start up sequence is:
+ * 1. Issue a PRECHARGE-BANK command (initial precharge)
+ * 2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
+ * 3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
+ * 4. Issue a MODE-SET command to initialize the mode register
+ *
+ * --------
+ *
+ * The initial commands are executed by setting P/LSDMR[OP] and
+ * accessing the SDRAM with a single-byte transaction."
+ *
+ * The appropriate BRx/ORx registers have already been set when we
+ * get here. The SDRAM can be accessed at the address CONFIG_SYS_SDRAM_BASE.
+ */
- memctl->memc_br3 = CONFIG_SYS_BR3_PRELIM + sdram_size;
- memctl->memc_or3 = or;
+ memctl->memc_mptpr = CONFIG_SYS_MPTPR;
+ memctl->memc_psrt = psrt;
memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
*ramaddr = c;
memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
for (i = 0; i < 8; i++)
- *ramaddr = c;
+ *ramaddr = c;
memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
*ramaddr = c;
memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
*ramaddr = c;
- }
- /* return total ram size */
- return (sdram_size * chipselects);
+ /*
+ * Do it a second time for the second set of chips if the DIMM has
+ * two chip selects (double sided).
+ */
+ if (chipselects > 1) {
+ ramaddr += sdram_size;
+
+ memctl->memc_br3 = CONFIG_SYS_BR3_PRELIM + sdram_size;
+ memctl->memc_or3 = or;
+
+ memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
+ *ramaddr = c;
+
+ memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
+ for (i = 0; i < 8; i++)
+ *ramaddr = c;
+
+ memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
+ *ramaddr = c;
+
+ memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
+ *ramaddr = c;
+ }
+
+ /* return total ram size */
+ return (sdram_size * chipselects);
}
/*-----------------------------------------------------------------------
* Board Control Functions
*/
-void board_poweroff (void)
+void board_poweroff(void)
{
- while (1); /* hang forever */
+ while (1); /* hang forever */
}
@@ -441,301 +448,288 @@ void board_poweroff (void)
/* ------------------------------------------------------------------------- */
int misc_init_r(void)
{
- /*
- * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
- */
- volatile ioport_t *iopa = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0 /* port A */);
- volatile ioport_t *iop = ioport_addr((immap_t *)CONFIG_SYS_IMMR, I2C_PORT);
-
- int reg; /* I2C register value */
- char *ep; /* Environment pointer */
- char str_buf[12] ; /* sprintf output buffer */
- int sample_rate; /* ADC/DAC sample rate */
- int sample_64x; /* Use 64/4 clocking for the ADC/DAC */
- int sample_128x; /* Use 128/4 clocking for the ADC/DAC */
- int right_just; /* Is the data to the DAC right justified? */
- int mclk_divide; /* MCLK Divide */
- int quiet; /* Quiet or minimal output mode */
-
- quiet = 0;
- if ((ep = getenv("quiet")) != NULL) {
- quiet = simple_strtol(ep, NULL, 10);
- }
- else {
- setenv("quiet", "0");
- }
-
- /*
- * SACSng custom initialization:
- * Start the ADC and DAC clocks, since the Crystal parts do not
- * work on the I2C bus until the clocks are running.
- */
-
- sample_rate = INITIAL_SAMPLE_RATE;
- if ((ep = getenv("DaqSampleRate")) != NULL) {
- sample_rate = simple_strtol(ep, NULL, 10);
- }
-
- sample_64x = INITIAL_SAMPLE_64X;
- sample_128x = INITIAL_SAMPLE_128X;
- if ((ep = getenv("Daq64xSampling")) != NULL) {
- sample_64x = simple_strtol(ep, NULL, 10);
+ /*
+ * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
+ */
+ volatile ioport_t *iopa =
+ ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0 /* port A */ );
+ volatile ioport_t *iop =
+ ioport_addr((immap_t *)CONFIG_SYS_IMMR, I2C_PORT);
+
+ int reg; /* I2C register value */
+ char *ep; /* Environment pointer */
+ char str_buf[12]; /* sprintf output buffer */
+ int sample_rate; /* ADC/DAC sample rate */
+ int sample_64x; /* Use 64/4 clocking for the ADC/DAC */
+ int sample_128x; /* Use 128/4 clocking for the ADC/DAC */
+ int right_just; /* Is the data to the DAC right justified? */
+ int mclk_divide; /* MCLK Divide */
+ int quiet; /* Quiet or minimal output mode */
+
+ quiet = 0;
+
+ if ((ep = getenv("quiet")) != NULL)
+ quiet = simple_strtol(ep, NULL, 10);
+ else
+ setenv("quiet", "0");
+
+ /*
+ * SACSng custom initialization:
+ * Start the ADC and DAC clocks, since the Crystal parts do not
+ * work on the I2C bus until the clocks are running.
+ */
+
+ sample_rate = INITIAL_SAMPLE_RATE;
+ if ((ep = getenv("DaqSampleRate")) != NULL)
+ sample_rate = simple_strtol(ep, NULL, 10);
+
+ sample_64x = INITIAL_SAMPLE_64X;
+ sample_128x = INITIAL_SAMPLE_128X;
+ if ((ep = getenv("Daq64xSampling")) != NULL) {
+ sample_64x = simple_strtol(ep, NULL, 10);
+ if (sample_64x)
+ sample_128x = 0;
+ else
+ sample_128x = 1;
+ } else {
+ if ((ep = getenv("Daq128xSampling")) != NULL) {
+ sample_128x = simple_strtol(ep, NULL, 10);
+ if (sample_128x)
+ sample_64x = 0;
+ else
+ sample_64x = 1;
+ }
+ }
+
+ /*
+ * Stop the clocks and wait for at least 1 LRCLK period
+ * to make sure the clocking has really stopped.
+ */
+ Daq_Stop_Clocks();
+ udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
+
+ /*
+ * Initialize the clocks with the new rates
+ */
+ Daq_Init_Clocks(sample_rate, sample_64x);
+ sample_rate = Daq_Get_SampleRate();
+
+ /*
+ * Start the clocks and wait for at least 1 LRCLK period
+ * to make sure the clocking has become stable.
+ */
+ Daq_Start_Clocks(sample_rate);
+ udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
+
+ sprintf(str_buf, "%d", sample_rate);
+ setenv("DaqSampleRate", str_buf);
+
if (sample_64x) {
- sample_128x = 0;
+ setenv("Daq64xSampling", "1");
+ setenv("Daq128xSampling", NULL);
+ } else {
+ setenv("Daq64xSampling", NULL);
+ setenv("Daq128xSampling", "1");
}
- else {
- sample_128x = 1;
+
+ /*
+ * Display the ADC/DAC clocking information
+ */
+ if (!quiet)
+ Daq_Display_Clocks();
+
+ /*
+ * Determine the DAC data justification
+ */
+
+ right_just = INITIAL_RIGHT_JUST;
+ if ((ep = getenv("DaqDACRightJustified")) != NULL)
+ right_just = simple_strtol(ep, NULL, 10);
+
+ sprintf(str_buf, "%d", right_just);
+ setenv("DaqDACRightJustified", str_buf);
+
+ /*
+ * Determine the DAC MCLK Divide
+ */
+
+ mclk_divide = INITIAL_MCLK_DIVIDE;
+ if ((ep = getenv("DaqDACMClockDivide")) != NULL)
+ mclk_divide = simple_strtol(ep, NULL, 10);
+
+ sprintf(str_buf, "%d", mclk_divide);
+ setenv("DaqDACMClockDivide", str_buf);
+
+ /*
+ * Initializing the I2C address in the Crystal A/Ds:
+ *
+ * 1) Wait for VREF cap to settle (10uSec per uF)
+ * 2) Release pullup on SDATA
+ * 3) Write the I2C address to register 6
+ * 4) Enable address matching by setting the MSB in register 7
+ */
+
+ if (!quiet)
+ printf("Initializing the ADC...\n");
+
+ udelay(ADC_INITIAL_DELAY); /* 10uSec per uF of VREF cap */
+
+ iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */
+ udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
+
+ i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR); /* set address */
+ i2c_reg_write(I2C_ADC_1_ADDR, 0x07, /* turn on ADDREN */
+ ADC_REG7_ADDR_ENABLE);
+
+ i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */
+ (sample_64x ? 0 : ADC_REG2_128x) |
+ ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);
+
+ reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
+ if (reg != I2C_ADC_1_ADDR) {
+ printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
+ reg, I2C_ADC_1_ADDR);
}
- }
- else {
- if ((ep = getenv("Daq128xSampling")) != NULL) {
- sample_128x = simple_strtol(ep, NULL, 10);
- if (sample_128x) {
- sample_64x = 0;
- }
- else {
- sample_64x = 1;
- }
+
+ iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */
+ udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
+
+ /* set address (do not set ADDREN yet) */
+ i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR);
+
+ i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */
+ (sample_64x ? 0 : ADC_REG2_128x) |
+ ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);
+
+ reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
+ if (reg != I2C_ADC_2_ADDR) {
+ printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
+ reg, I2C_ADC_2_ADDR);
}
- }
-
- /*
- * Stop the clocks and wait for at least 1 LRCLK period
- * to make sure the clocking has really stopped.
- */
- Daq_Stop_Clocks();
- udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
-
- /*
- * Initialize the clocks with the new rates
- */
- Daq_Init_Clocks(sample_rate, sample_64x);
- sample_rate = Daq_Get_SampleRate();
-
- /*
- * Start the clocks and wait for at least 1 LRCLK period
- * to make sure the clocking has become stable.
- */
- Daq_Start_Clocks(sample_rate);
- udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
-
- sprintf(str_buf, "%d", sample_rate);
- setenv("DaqSampleRate", str_buf);
-
- if (sample_64x) {
- setenv("Daq64xSampling", "1");
- setenv("Daq128xSampling", NULL);
- }
- else {
- setenv("Daq64xSampling", NULL);
- setenv("Daq128xSampling", "1");
- }
-
- /*
- * Display the ADC/DAC clocking information
- */
- if (!quiet) {
- Daq_Display_Clocks();
- }
-
- /*
- * Determine the DAC data justification
- */
-
- right_just = INITIAL_RIGHT_JUST;
- if ((ep = getenv("DaqDACRightJustified")) != NULL) {
- right_just = simple_strtol(ep, NULL, 10);
- }
-
- sprintf(str_buf, "%d", right_just);
- setenv("DaqDACRightJustified", str_buf);
-
- /*
- * Determine the DAC MCLK Divide
- */
-
- mclk_divide = INITIAL_MCLK_DIVIDE;
- if ((ep = getenv("DaqDACMClockDivide")) != NULL) {
- mclk_divide = simple_strtol(ep, NULL, 10);
- }
-
- sprintf(str_buf, "%d", mclk_divide);
- setenv("DaqDACMClockDivide", str_buf);
-
- /*
- * Initializing the I2C address in the Crystal A/Ds:
- *
- * 1) Wait for VREF cap to settle (10uSec per uF)
- * 2) Release pullup on SDATA
- * 3) Write the I2C address to register 6
- * 4) Enable address matching by setting the MSB in register 7
- */
-
- if (!quiet) {
- printf("Initializing the ADC...\n");
- }
- udelay(ADC_INITIAL_DELAY); /* 10uSec per uF of VREF cap */
-
- iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */
- udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
-
- i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR); /* set address */
- i2c_reg_write(I2C_ADC_1_ADDR, 0x07, /* turn on ADDREN */
- ADC_REG7_ADDR_ENABLE);
-
- i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */
- (sample_64x ? 0 : ADC_REG2_128x) |
- ADC_REG2_HIGH_PASS_DIS |
- ADC_REG2_SLAVE_MODE);
-
- reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
- if(reg != I2C_ADC_1_ADDR)
- printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
- reg, I2C_ADC_1_ADDR);
-
- iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */
- udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
-
- i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR); /* set address (do not set ADDREN yet) */
-
- i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */
- (sample_64x ? 0 : ADC_REG2_128x) |
- ADC_REG2_HIGH_PASS_DIS |
- ADC_REG2_SLAVE_MODE);
-
- reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
- if(reg != I2C_ADC_2_ADDR)
- printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
- reg, I2C_ADC_2_ADDR);
-
- i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */
- ADC_REG1_FRAME_START |
- ADC_REG1_GROUND_CAL);
-
- i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */
- (sample_64x ? 0 : ADC_REG2_128x) |
- ADC_REG2_CAL |
- ADC_REG2_HIGH_PASS_DIS |
- ADC_REG2_SLAVE_MODE);
-
- udelay(ADC_CAL_DELAY); /* a minimum of 4100 LRCLKs */
- i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00); /* remove GNDCAL */
-
- /*
- * Now that we have synchronized the ADC's, enable address
- * selection on the second ADC as well as the first.
- */
- i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);
-
- /*
- * Initialize the Crystal DAC
- *
- * Two of the config lines are used for I2C so we have to set them
- * to the proper initialization state without inadvertantly
- * sending an I2C "start" sequence. When we bring the I2C back to
- * the normal state, we send an I2C "stop" sequence.
- */
- if (!quiet) {
- printf("Initializing the DAC...\n");
- }
-
- /*
- * Bring the I2C clock and data lines low for initialization
- */
- I2C_SCL(0);
- I2C_DELAY;
- I2C_SDA(0);
- I2C_ACTIVE;
- I2C_DELAY;
-
- /* Reset the DAC */
- iopa->pdat &= ~DAC_RST_MASK;
- udelay(DAC_RESET_DELAY);
-
- /* Release the DAC reset */
- iopa->pdat |= DAC_RST_MASK;
- udelay(DAC_INITIAL_DELAY);
-
- /*
- * Cause the DAC to:
- * Enable control port (I2C mode)
- * Going into power down
- */
- i2c_reg_write(I2C_DAC_ADDR, 0x05,
- DAC_REG5_I2C_MODE |
- DAC_REG5_POWER_DOWN);
-
- /*
- * Cause the DAC to:
- * Enable control port (I2C mode)
- * Going into power down
- * . MCLK divide by 1
- * . MCLK divide by 2
- */
- i2c_reg_write(I2C_DAC_ADDR, 0x05,
- DAC_REG5_I2C_MODE |
- DAC_REG5_POWER_DOWN |
- (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
-
- /*
- * Cause the DAC to:
- * Auto-mute disabled
- * . Format 0, left justified 24 bits
- * . Format 3, right justified 24 bits
- * No de-emphasis
- * . Single speed mode
- * . Double speed mode
- */
- i2c_reg_write(I2C_DAC_ADDR, 0x01,
- (right_just ? DAC_REG1_RIGHT_JUST_24BIT :
- DAC_REG1_LEFT_JUST_24_BIT) |
- DAC_REG1_DEM_NO |
- (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));
-
- sprintf(str_buf, "%d",
- sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
- setenv("DaqDACFunctionalMode", str_buf);
-
- /*
- * Cause the DAC to:
- * Enable control port (I2C mode)
- * Remove power down
- * . MCLK divide by 1
- * . MCLK divide by 2
- */
- i2c_reg_write(I2C_DAC_ADDR, 0x05,
- DAC_REG5_I2C_MODE |
- (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
-
- /*
- * Create a I2C stop condition:
- * low->high on data while clock is high.
- */
- I2C_SCL(1);
- I2C_DELAY;
- I2C_SDA(1);
- I2C_DELAY;
- I2C_TRISTATE;
-
- if (!quiet) {
- printf("\n");
- }
+ i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */
+ ADC_REG1_FRAME_START | ADC_REG1_GROUND_CAL);
+
+ i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */
+ (sample_64x ? 0 : ADC_REG2_128x) |
+ ADC_REG2_CAL |
+ ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);
+
+ udelay(ADC_CAL_DELAY); /* a minimum of 4100 LRCLKs */
+ i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00); /* remove GNDCAL */
+
+ /*
+ * Now that we have synchronized the ADC's, enable address
+ * selection on the second ADC as well as the first.
+ */
+ i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);
+
+ /*
+ * Initialize the Crystal DAC
+ *
+ * Two of the config lines are used for I2C so we have to set them
+ * to the proper initialization state without inadvertantly
+ * sending an I2C "start" sequence. When we bring the I2C back to
+ * the normal state, we send an I2C "stop" sequence.
+ */
+ if (!quiet)
+ printf("Initializing the DAC...\n");
+
+ /*
+ * Bring the I2C clock and data lines low for initialization
+ */
+ I2C_SCL(0);
+ I2C_DELAY;
+ I2C_SDA(0);
+ I2C_ACTIVE;
+ I2C_DELAY;
+
+ /* Reset the DAC */
+ iopa->pdat &= ~DAC_RST_MASK;
+ udelay(DAC_RESET_DELAY);
+
+ /* Release the DAC reset */
+ iopa->pdat |= DAC_RST_MASK;
+ udelay(DAC_INITIAL_DELAY);
+
+ /*
+ * Cause the DAC to:
+ * Enable control port (I2C mode)
+ * Going into power down
+ */
+ i2c_reg_write(I2C_DAC_ADDR, 0x05,
+ DAC_REG5_I2C_MODE | DAC_REG5_POWER_DOWN);
+
+ /*
+ * Cause the DAC to:
+ * Enable control port (I2C mode)
+ * Going into power down
+ * . MCLK divide by 1
+ * . MCLK divide by 2
+ */
+ i2c_reg_write(I2C_DAC_ADDR, 0x05,
+ DAC_REG5_I2C_MODE |
+ DAC_REG5_POWER_DOWN |
+ (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
+
+ /*
+ * Cause the DAC to:
+ * Auto-mute disabled
+ * . Format 0, left justified 24 bits
+ * . Format 3, right justified 24 bits
+ * No de-emphasis
+ * . Single speed mode
+ * . Double speed mode
+ */
+ i2c_reg_write(I2C_DAC_ADDR, 0x01,
+ (right_just ? DAC_REG1_RIGHT_JUST_24BIT :
+ DAC_REG1_LEFT_JUST_24_BIT) |
+ DAC_REG1_DEM_NO |
+ (sample_rate >=
+ 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));
+
+ sprintf(str_buf, "%d",
+ sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
+ setenv("DaqDACFunctionalMode", str_buf);
+
+ /*
+ * Cause the DAC to:
+ * Enable control port (I2C mode)
+ * Remove power down
+ * . MCLK divide by 1
+ * . MCLK divide by 2
+ */
+ i2c_reg_write(I2C_DAC_ADDR, 0x05,
+ DAC_REG5_I2C_MODE |
+ (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
+
+ /*
+ * Create a I2C stop condition:
+ * low->high on data while clock is high.
+ */
+ I2C_SCL(1);
+ I2C_DELAY;
+ I2C_SDA(1);
+ I2C_DELAY;
+ I2C_TRISTATE;
+
+ if (!quiet)
+ printf("\n");
#ifdef CONFIG_ETHER_LOOPBACK_TEST
- /*
- * Run the Ethernet loopback test
- */
- eth_loopback_test ();
+ /*
+ * Run the Ethernet loopback test
+ */
+ eth_loopback_test();
#endif /* CONFIG_ETHER_LOOPBACK_TEST */
#ifdef CONFIG_SHOW_BOOT_PROGRESS
- /*
- * Turn off the RED fail LED now that we are up and running.
- */
- status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
+ /*
+ * Turn off the RED fail LED now that we are up and running.
+ */
+ status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
#endif
- return 0;
+ return 0;
}
#ifdef CONFIG_SHOW_BOOT_PROGRESS
@@ -749,85 +743,86 @@ int misc_init_r(void)
*/
static void flash_code(uchar number, uchar modulo, uchar digits)
{
- int j;
-
- /*
- * Recursively do upper digits.
- */
- if(digits > 1) {
- flash_code(number / modulo, modulo, digits - 1);
- }
-
- number = number % modulo;
-
- /*
- * Zero is indicated by one long flash (dash).
- */
- if(number == 0) {
- status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
- udelay(1000000);
- status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
- udelay(200000);
- } else {
- /*
- * Non-zero is indicated by short flashes, one per count.
- */
- for(j = 0; j < number; j++) {
- status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
- udelay(100000);
- status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
- udelay(200000);
- }
- }
- /*
- * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
- */
- udelay(700000);
-}
-
-static int last_boot_progress;
+ int j;
-void show_boot_progress (int status)
-{
- int i,j;
- if(status > 0) {
- last_boot_progress = status;
- } else {
/*
- * If a specific failure code is given, flash this code
- * else just use the last success code we've seen
+ * Recursively do upper digits.
*/
- if(status < -1)
- last_boot_progress = -status;
+ if (digits > 1)
+ flash_code(number / modulo, modulo, digits - 1);
+
+ number = number % modulo;
/*
- * Flash this code 5 times
+ * Zero is indicated by one long flash (dash).
*/
- for(j=0; j<5; j++) {
- /*
- * Houston, we have a problem.
- * Blink the last OK status which indicates where things failed.
- */
- status_led_set(STATUS_LED_RED, STATUS_LED_ON);
- flash_code(last_boot_progress, 5, 3);
-
- /*
- * Delay 5 seconds between repetitions,
- * with the fault LED blinking
- */
- for(i=0; i<5; i++) {
- status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
- udelay(500000);
- status_led_set(STATUS_LED_RED, STATUS_LED_ON);
- udelay(500000);
- }
+ if (number == 0) {
+ status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
+ udelay(1000000);
+ status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
+ udelay(200000);
+ } else {
+ /*
+ * Non-zero is indicated by short flashes, one per count.
+ */
+ for (j = 0; j < number; j++) {
+ status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
+ udelay(100000);
+ status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
+ udelay(200000);
+ }
}
-
/*
- * Reset the board to retry initialization.
+ * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
*/
- do_reset (NULL, 0, 0, NULL);
- }
+ udelay(700000);
+}
+
+static int last_boot_progress;
+
+void show_boot_progress(int status)
+{
+ int i, j;
+
+ if (status > 0) {
+ last_boot_progress = status;
+ } else {
+ /*
+ * If a specific failure code is given, flash this code
+ * else just use the last success code we've seen
+ */
+ if (status < -1)
+ last_boot_progress = -status;
+
+ /*
+ * Flash this code 5 times
+ */
+ for (j = 0; j < 5; j++) {
+ /*
+ * Houston, we have a problem.
+ * Blink the last OK status which indicates where things failed.
+ */
+ status_led_set(STATUS_LED_RED, STATUS_LED_ON);
+ flash_code(last_boot_progress, 5, 3);
+
+ /*
+ * Delay 5 seconds between repetitions,
+ * with the fault LED blinking
+ */
+ for (i = 0; i < 5; i++) {
+ status_led_set(STATUS_LED_RED,
+ STATUS_LED_OFF);
+ udelay(500000);
+ status_led_set(STATUS_LED_RED, STATUS_LED_ON);
+ udelay(500000);
+ }
+ }
+
+ /*
+ * Reset the board to retry initialization.
+ */
+ do_reset(NULL, 0, 0, NULL);
+ }
}
#endif /* CONFIG_SHOW_BOOT_PROGRESS */
@@ -841,27 +836,29 @@ void show_boot_progress (int status)
#define SPI_DAC_CS_MASK 0x00001000
static const u32 cs_mask[] = {
- SPI_ADC_CS_MASK,
- SPI_DAC_CS_MASK,
+ SPI_ADC_CS_MASK,
+ SPI_DAC_CS_MASK,
};
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
- return bus == 0 && cs < sizeof(cs_mask) / sizeof(cs_mask[0]);
+ return bus == 0 && cs < sizeof(cs_mask) / sizeof(cs_mask[0]);
}
void spi_cs_activate(struct spi_slave *slave)
{
- volatile ioport_t *iopd = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 3 /* port D */);
+ volatile ioport_t *iopd =
+ ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ );
- iopd->pdat &= ~cs_mask[slave->cs];
+ iopd->pdat &= ~cs_mask[slave->cs];
}
void spi_cs_deactivate(struct spi_slave *slave)
{
- volatile ioport_t *iopd = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 3 /* port D */);
+ volatile ioport_t *iopd =
+ ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ );
- iopd->pdat |= cs_mask[slave->cs];
+ iopd->pdat |= cs_mask[slave->cs];
}
#endif