diff options
Diffstat (limited to 'board/xilinx/xilinx_iic/xiic_l.c')
-rw-r--r-- | board/xilinx/xilinx_iic/xiic_l.c | 484 |
1 files changed, 484 insertions, 0 deletions
diff --git a/board/xilinx/xilinx_iic/xiic_l.c b/board/xilinx/xilinx_iic/xiic_l.c new file mode 100644 index 0000000000..6b7816373e --- /dev/null +++ b/board/xilinx/xilinx_iic/xiic_l.c @@ -0,0 +1,484 @@ +/* $Id: xiic_l.c,v 1.2 2002/12/05 19:32:40 meinelte Exp $ */ +/****************************************************************************** +* +* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" +* AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND +* SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, +* OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, +* APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION +* THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, +* AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE +* FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY +* WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE +* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR +* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF +* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +* FOR A PARTICULAR PURPOSE. +* +* (c) Copyright 2002 Xilinx Inc. +* All rights reserved. +* +******************************************************************************/ +/*****************************************************************************/ +/** +* +* @file xiic_l.c +* +* This file contains low-level driver functions that can be used to access the +* device. The user should refer to the hardware device specification for more +* details of the device operation. +* +* <pre> +* MODIFICATION HISTORY: +* +* Ver Who Date Changes +* ----- --- ------- ----------------------------------------------- +* 1.01b jhl 5/13/02 First release +* 1.01b jhl 10/14/02 Corrected bug in the receive function, the setup of the +* interrupt status mask was not being done in the loop such +* that a read would sometimes fail on the last byte because +* the transmit error which should have been ignored was +* being used. This would leave an extra byte in the FIFO +* and the bus throttled such that the next operation would +* also fail. Also updated the receive function to not +* disable the device after the last byte until after the +* bus transitions to not busy which is more consistent +* with the expected behavior. +* 1.01c ecm 12/05/02 new rev +* </pre> +* +****************************************************************************/ + +/***************************** Include Files *******************************/ + +#include "xbasic_types.h" +#include "xio.h" +#include "xipif_v1_23_b.h" +#include "xiic_l.h" + +/************************** Constant Definitions ***************************/ + +/**************************** Type Definitions *****************************/ + + +/***************** Macros (Inline Functions) Definitions *******************/ + + +/****************************************************************************** +* +* This macro clears the specified interrupt in the IPIF interrupt status +* register. It is non-destructive in that the register is read and only the +* interrupt specified is cleared. Clearing an interrupt acknowledges it. +* +* @param BaseAddress contains the IPIF registers base address. +* +* @param InterruptMask contains the interrupts to be disabled +* +* @return +* +* None. +* +* @note +* +* Signature: void XIic_mClearIisr(u32 BaseAddress, +* u32 InterruptMask); +* +******************************************************************************/ +#define XIic_mClearIisr(BaseAddress, InterruptMask) \ + XIIF_V123B_WRITE_IISR((BaseAddress), \ + XIIF_V123B_READ_IISR(BaseAddress) & (InterruptMask)) + +/****************************************************************************** +* +* This macro sends the address for a 7 bit address during both read and write +* operations. It takes care of the details to format the address correctly. +* This macro is designed to be called internally to the drivers. +* +* @param SlaveAddress contains the address of the slave to send to. +* +* @param Operation indicates XIIC_READ_OPERATION or XIIC_WRITE_OPERATION +* +* @return +* +* None. +* +* @note +* +* Signature: void XIic_mSend7BitAddr(u16 SlaveAddress, u8 Operation); +* +******************************************************************************/ +#define XIic_mSend7BitAddress(BaseAddress, SlaveAddress, Operation) \ +{ \ + u8 LocalAddr = (u8)(SlaveAddress << 1); \ + LocalAddr = (LocalAddr & 0xFE) | (Operation); \ + XIo_Out8(BaseAddress + XIIC_DTR_REG_OFFSET, LocalAddr); \ +} + +/************************** Function Prototypes ****************************/ + +static unsigned RecvData (u32 BaseAddress, u8 * BufferPtr, + unsigned ByteCount); +static unsigned SendData (u32 BaseAddress, u8 * BufferPtr, + unsigned ByteCount); + +/************************** Variable Definitions **************************/ + + +/****************************************************************************/ +/** +* Receive data as a master on the IIC bus. This function receives the data +* using polled I/O and blocks until the data has been received. It only +* supports 7 bit addressing and non-repeated start modes of operation. The +* user is responsible for ensuring the bus is not busy if multiple masters +* are present on the bus. +* +* @param BaseAddress contains the base address of the IIC device. +* @param Address contains the 7 bit IIC address of the device to send the +* specified data to. +* @param BufferPtr points to the data to be sent. +* @param ByteCount is the number of bytes to be sent. +* +* @return +* +* The number of bytes received. +* +* @note +* +* None +* +******************************************************************************/ +unsigned XIic_Recv (u32 BaseAddress, u8 Address, + u8 * BufferPtr, unsigned ByteCount) +{ + u8 CntlReg; + unsigned RemainingByteCount; + + /* Tx error is enabled incase the address (7 or 10) has no device to answer + * with Ack. When only one byte of data, must set NO ACK before address goes + * out therefore Tx error must not be enabled as it will go off immediately + * and the Rx full interrupt will be checked. If full, then the one byte + * was received and the Tx error will be disabled without sending an error + * callback msg. + */ + XIic_mClearIisr (BaseAddress, + XIIC_INTR_RX_FULL_MASK | XIIC_INTR_TX_ERROR_MASK | + XIIC_INTR_ARB_LOST_MASK); + + /* Set receive FIFO occupancy depth for 1 byte (zero based) + */ + XIo_Out8 (BaseAddress + XIIC_RFD_REG_OFFSET, 0); + + /* 7 bit slave address, send the address for a read operation + * and set the state to indicate the address has been sent + */ + XIic_mSend7BitAddress (BaseAddress, Address, XIIC_READ_OPERATION); + + /* MSMS gets set after putting data in FIFO. Start the master receive + * operation by setting CR Bits MSMS to Master, if the buffer is only one + * byte, then it should not be acknowledged to indicate the end of data + */ + CntlReg = XIIC_CR_MSMS_MASK | XIIC_CR_ENABLE_DEVICE_MASK; + if (ByteCount == 1) { + CntlReg |= XIIC_CR_NO_ACK_MASK; + } + + /* Write out the control register to start receiving data and call the + * function to receive each byte into the buffer + */ + XIo_Out8 (BaseAddress + XIIC_CR_REG_OFFSET, CntlReg); + + /* Clear the latched interrupt status for the bus not busy bit which must + * be done while the bus is busy + */ + XIic_mClearIisr (BaseAddress, XIIC_INTR_BNB_MASK); + + /* Try to receive the data from the IIC bus */ + + RemainingByteCount = RecvData (BaseAddress, BufferPtr, ByteCount); + /* + * The receive is complete, disable the IIC device and return the number of + * bytes that was received + */ + XIo_Out8 (BaseAddress + XIIC_CR_REG_OFFSET, 0); + + /* Return the number of bytes that was received */ + + return ByteCount - RemainingByteCount; +} + +/****************************************************************************** +* +* Receive the specified data from the device that has been previously addressed +* on the IIC bus. This function assumes that the 7 bit address has been sent +* and it should wait for the transmit of the address to complete. +* +* @param BaseAddress contains the base address of the IIC device. +* @param BufferPtr points to the buffer to hold the data that is received. +* @param ByteCount is the number of bytes to be received. +* +* @return +* +* The number of bytes remaining to be received. +* +* @note +* +* This function does not take advantage of the receive FIFO because it is +* designed for minimal code space and complexity. It contains loops that +* that could cause the function not to return if the hardware is not working. +* +* This function assumes that the calling function will disable the IIC device +* after this function returns. +* +******************************************************************************/ +static unsigned RecvData (u32 BaseAddress, u8 * BufferPtr, unsigned ByteCount) +{ + u8 CntlReg; + u32 IntrStatusMask; + u32 IntrStatus; + + /* Attempt to receive the specified number of bytes on the IIC bus */ + + while (ByteCount > 0) { + /* Setup the mask to use for checking errors because when receiving one + * byte OR the last byte of a multibyte message an error naturally + * occurs when the no ack is done to tell the slave the last byte + */ + if (ByteCount == 1) { + IntrStatusMask = + XIIC_INTR_ARB_LOST_MASK | XIIC_INTR_BNB_MASK; + } else { + IntrStatusMask = + XIIC_INTR_ARB_LOST_MASK | + XIIC_INTR_TX_ERROR_MASK | XIIC_INTR_BNB_MASK; + } + + /* Wait for the previous transmit and the 1st receive to complete + * by checking the interrupt status register of the IPIF + */ + while (1) { + IntrStatus = XIIF_V123B_READ_IISR (BaseAddress); + if (IntrStatus & XIIC_INTR_RX_FULL_MASK) { + break; + } + /* Check the transmit error after the receive full because when + * sending only one byte transmit error will occur because of the + * no ack to indicate the end of the data + */ + if (IntrStatus & IntrStatusMask) { + return ByteCount; + } + } + + CntlReg = XIo_In8 (BaseAddress + XIIC_CR_REG_OFFSET); + + /* Special conditions exist for the last two bytes so check for them + * Note that the control register must be setup for these conditions + * before the data byte which was already received is read from the + * receive FIFO (while the bus is throttled + */ + if (ByteCount == 1) { + /* For the last data byte, it has already been read and no ack + * has been done, so clear MSMS while leaving the device enabled + * so it can get off the IIC bus appropriately with a stop. + */ + XIo_Out8 (BaseAddress + XIIC_CR_REG_OFFSET, + XIIC_CR_ENABLE_DEVICE_MASK); + } + + /* Before the last byte is received, set NOACK to tell the slave IIC + * device that it is the end, this must be done before reading the byte + * from the FIFO + */ + if (ByteCount == 2) { + /* Write control reg with NO ACK allowing last byte to + * have the No ack set to indicate to slave last byte read. + */ + XIo_Out8 (BaseAddress + XIIC_CR_REG_OFFSET, + CntlReg | XIIC_CR_NO_ACK_MASK); + } + + /* Read in data from the FIFO and unthrottle the bus such that the + * next byte is read from the IIC bus + */ + *BufferPtr++ = XIo_In8 (BaseAddress + XIIC_DRR_REG_OFFSET); + + /* Clear the latched interrupt status so that it will be updated with + * the new state when it changes, this must be done after the receive + * register is read + */ + XIic_mClearIisr (BaseAddress, XIIC_INTR_RX_FULL_MASK | + XIIC_INTR_TX_ERROR_MASK | + XIIC_INTR_ARB_LOST_MASK); + ByteCount--; + } + + /* Wait for the bus to transition to not busy before returning, the IIC + * device cannot be disabled until this occurs. It should transition as + * the MSMS bit of the control register was cleared before the last byte + * was read from the FIFO. + */ + while (1) { + if (XIIF_V123B_READ_IISR (BaseAddress) & XIIC_INTR_BNB_MASK) { + break; + } + } + + return ByteCount; +} + +/****************************************************************************/ +/** +* Send data as a master on the IIC bus. This function sends the data +* using polled I/O and blocks until the data has been sent. It only supports +* 7 bit addressing and non-repeated start modes of operation. The user is +* responsible for ensuring the bus is not busy if multiple masters are present +* on the bus. +* +* @param BaseAddress contains the base address of the IIC device. +* @param Address contains the 7 bit IIC address of the device to send the +* specified data to. +* @param BufferPtr points to the data to be sent. +* @param ByteCount is the number of bytes to be sent. +* +* @return +* +* The number of bytes sent. +* +* @note +* +* None +* +******************************************************************************/ +unsigned XIic_Send (u32 BaseAddress, u8 Address, + u8 * BufferPtr, unsigned ByteCount) +{ + unsigned RemainingByteCount; + + /* Put the address into the FIFO to be sent and indicate that the operation + * to be performed on the bus is a write operation + */ + XIic_mSend7BitAddress (BaseAddress, Address, XIIC_WRITE_OPERATION); + + /* Clear the latched interrupt status so that it will be updated with the + * new state when it changes, this must be done after the address is put + * in the FIFO + */ + XIic_mClearIisr (BaseAddress, XIIC_INTR_TX_EMPTY_MASK | + XIIC_INTR_TX_ERROR_MASK | XIIC_INTR_ARB_LOST_MASK); + + /* MSMS must be set after putting data into transmit FIFO, indicate the + * direction is transmit, this device is master and enable the IIC device + */ + XIo_Out8 (BaseAddress + XIIC_CR_REG_OFFSET, + XIIC_CR_MSMS_MASK | XIIC_CR_DIR_IS_TX_MASK | + XIIC_CR_ENABLE_DEVICE_MASK); + + /* Clear the latched interrupt + * status for the bus not busy bit which must be done while the bus is busy + */ + XIic_mClearIisr (BaseAddress, XIIC_INTR_BNB_MASK); + + /* Send the specified data to the device on the IIC bus specified by the + * the address + */ + RemainingByteCount = SendData (BaseAddress, BufferPtr, ByteCount); + + /* + * The send is complete, disable the IIC device and return the number of + * bytes that was sent + */ + XIo_Out8 (BaseAddress + XIIC_CR_REG_OFFSET, 0); + + return ByteCount - RemainingByteCount; +} + +/****************************************************************************** +* +* Send the specified buffer to the device that has been previously addressed +* on the IIC bus. This function assumes that the 7 bit address has been sent +* and it should wait for the transmit of the address to complete. +* +* @param BaseAddress contains the base address of the IIC device. +* @param BufferPtr points to the data to be sent. +* @param ByteCount is the number of bytes to be sent. +* +* @return +* +* The number of bytes remaining to be sent. +* +* @note +* +* This function does not take advantage of the transmit FIFO because it is +* designed for minimal code space and complexity. It contains loops that +* that could cause the function not to return if the hardware is not working. +* +******************************************************************************/ +static unsigned SendData (u32 BaseAddress, u8 * BufferPtr, unsigned ByteCount) +{ + u32 IntrStatus; + + /* Send the specified number of bytes in the specified buffer by polling + * the device registers and blocking until complete + */ + while (ByteCount > 0) { + /* Wait for the transmit to be empty before sending any more data + * by polling the interrupt status register + */ + while (1) { + IntrStatus = XIIF_V123B_READ_IISR (BaseAddress); + + if (IntrStatus & (XIIC_INTR_TX_ERROR_MASK | + XIIC_INTR_ARB_LOST_MASK | + XIIC_INTR_BNB_MASK)) { + return ByteCount; + } + + if (IntrStatus & XIIC_INTR_TX_EMPTY_MASK) { + break; + } + } + /* If there is more than one byte to send then put the next byte to send + * into the transmit FIFO + */ + if (ByteCount > 1) { + XIo_Out8 (BaseAddress + XIIC_DTR_REG_OFFSET, + *BufferPtr++); + } else { + /* Set the stop condition before sending the last byte of data so that + * the stop condition will be generated immediately following the data + * This is done by clearing the MSMS bit in the control register. + */ + XIo_Out8 (BaseAddress + XIIC_CR_REG_OFFSET, + XIIC_CR_ENABLE_DEVICE_MASK | + XIIC_CR_DIR_IS_TX_MASK); + + /* Put the last byte to send in the transmit FIFO */ + + XIo_Out8 (BaseAddress + XIIC_DTR_REG_OFFSET, + *BufferPtr++); + } + + /* Clear the latched interrupt status register and this must be done after + * the transmit FIFO has been written to or it won't clear + */ + XIic_mClearIisr (BaseAddress, XIIC_INTR_TX_EMPTY_MASK); + + /* Update the byte count to reflect the byte sent and clear the latched + * interrupt status so it will be updated for the new state + */ + ByteCount--; + } + + /* Wait for the bus to transition to not busy before returning, the IIC + * device cannot be disabled until this occurs. + * Note that this is different from a receive operation because the stop + * condition causes the bus to go not busy. + */ + while (1) { + if (XIIF_V123B_READ_IISR (BaseAddress) & XIIC_INTR_BNB_MASK) { + break; + } + } + + return ByteCount; +} |