summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/mxc_nand.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/mxc_nand.c')
-rw-r--r--drivers/mtd/nand/mxc_nand.c880
1 files changed, 880 insertions, 0 deletions
diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c
new file mode 100644
index 0000000000..647be0b7ef
--- /dev/null
+++ b/drivers/mtd/nand/mxc_nand.c
@@ -0,0 +1,880 @@
+/*
+ * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
+ * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
+ * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
+ * MA 02110-1301, USA.
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <linux/err.h>
+#include <asm/io.h>
+#ifdef CONFIG_MX27
+#include <asm/arch/imx-regs.h>
+#endif
+
+#define DRIVER_NAME "mxc_nand"
+
+struct nfc_regs {
+/* NFC RAM BUFFER Main area 0 */
+ uint8_t main_area0[0x200];
+ uint8_t main_area1[0x200];
+ uint8_t main_area2[0x200];
+ uint8_t main_area3[0x200];
+/* SPARE BUFFER Spare area 0 */
+ uint8_t spare_area0[0x10];
+ uint8_t spare_area1[0x10];
+ uint8_t spare_area2[0x10];
+ uint8_t spare_area3[0x10];
+ uint8_t pad[0x5c0];
+/* NFC registers */
+ uint16_t nfc_buf_size;
+ uint16_t reserved;
+ uint16_t nfc_buf_addr;
+ uint16_t nfc_flash_addr;
+ uint16_t nfc_flash_cmd;
+ uint16_t nfc_config;
+ uint16_t nfc_ecc_status_result;
+ uint16_t nfc_rsltmain_area;
+ uint16_t nfc_rsltspare_area;
+ uint16_t nfc_wrprot;
+ uint16_t nfc_unlockstart_blkaddr;
+ uint16_t nfc_unlockend_blkaddr;
+ uint16_t nfc_nf_wrprst;
+ uint16_t nfc_config1;
+ uint16_t nfc_config2;
+};
+
+/*
+ * Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
+ * for Command operation
+ */
+#define NFC_CMD 0x1
+
+/*
+ * Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
+ * for Address operation
+ */
+#define NFC_ADDR 0x2
+
+/*
+ * Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
+ * for Input operation
+ */
+#define NFC_INPUT 0x4
+
+/*
+ * Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
+ * for Data Output operation
+ */
+#define NFC_OUTPUT 0x8
+
+/*
+ * Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
+ * for Read ID operation
+ */
+#define NFC_ID 0x10
+
+/*
+ * Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
+ * for Read Status operation
+ */
+#define NFC_STATUS 0x20
+
+/*
+ * Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
+ * Status operation
+ */
+#define NFC_INT 0x8000
+
+#define NFC_SP_EN (1 << 2)
+#define NFC_ECC_EN (1 << 3)
+#define NFC_BIG (1 << 5)
+#define NFC_RST (1 << 6)
+#define NFC_CE (1 << 7)
+#define NFC_ONE_CYCLE (1 << 8)
+
+typedef enum {false, true} bool;
+
+struct mxc_nand_host {
+ struct mtd_info mtd;
+ struct nand_chip *nand;
+
+ struct nfc_regs __iomem *regs;
+ int spare_only;
+ int status_request;
+ int pagesize_2k;
+ int clk_act;
+ uint16_t col_addr;
+};
+
+static struct mxc_nand_host mxc_host;
+static struct mxc_nand_host *host = &mxc_host;
+
+/* Define delays in microsec for NAND device operations */
+#define TROP_US_DELAY 2000
+/* Macros to get byte and bit positions of ECC */
+#define COLPOS(x) ((x) >> 3)
+#define BITPOS(x) ((x) & 0xf)
+
+/* Define single bit Error positions in Main & Spare area */
+#define MAIN_SINGLEBIT_ERROR 0x4
+#define SPARE_SINGLEBIT_ERROR 0x1
+
+/* OOB placement block for use with hardware ecc generation */
+#ifdef CONFIG_MXC_NAND_HWECC
+static struct nand_ecclayout nand_hw_eccoob = {
+ .eccbytes = 5,
+ .eccpos = {6, 7, 8, 9, 10},
+ .oobfree = {{0, 5}, {11, 5}, }
+};
+#else
+static struct nand_ecclayout nand_soft_eccoob = {
+ .eccbytes = 6,
+ .eccpos = {6, 7, 8, 9, 10, 11},
+ .oobfree = {{0, 5}, {12, 4}, }
+};
+#endif
+
+static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
+{
+ uint32_t *d = dest;
+
+ size >>= 2;
+ while (size--)
+ __raw_writel(__raw_readl(source++), d++);
+ return dest;
+}
+
+/*
+ * This function polls the NANDFC to wait for the basic operation to
+ * complete by checking the INT bit of config2 register.
+ */
+static void wait_op_done(struct mxc_nand_host *host, int max_retries,
+ uint16_t param)
+{
+ uint32_t tmp;
+
+ while (max_retries-- > 0) {
+ if (readw(&host->regs->nfc_config2) & NFC_INT) {
+ tmp = readw(&host->regs->nfc_config2);
+ tmp &= ~NFC_INT;
+ writew(tmp, &host->regs->nfc_config2);
+ break;
+ }
+ udelay(1);
+ }
+ if (max_retries < 0) {
+ MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
+ __func__, param);
+ }
+}
+
+/*
+ * This function issues the specified command to the NAND device and
+ * waits for completion.
+ */
+static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
+{
+ MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
+
+ writew(cmd, &host->regs->nfc_flash_cmd);
+ writew(NFC_CMD, &host->regs->nfc_config2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, cmd);
+}
+
+/*
+ * This function sends an address (or partial address) to the
+ * NAND device. The address is used to select the source/destination for
+ * a NAND command.
+ */
+static void send_addr(struct mxc_nand_host *host, uint16_t addr)
+{
+ MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
+
+ writew(addr, &host->regs->nfc_flash_addr);
+ writew(NFC_ADDR, &host->regs->nfc_config2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, addr);
+}
+
+/*
+ * This function requests the NANDFC to initate the transfer
+ * of data currently in the NANDFC RAM buffer to the NAND device.
+ */
+static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
+ int spare_only)
+{
+ MTDDEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
+
+ writew(buf_id, &host->regs->nfc_buf_addr);
+
+ /* Configure spare or page+spare access */
+ if (!host->pagesize_2k) {
+ uint16_t config1 = readw(&host->regs->nfc_config1);
+ if (spare_only)
+ config1 |= NFC_SP_EN;
+ else
+ config1 &= ~(NFC_SP_EN);
+ writew(config1, &host->regs->nfc_config1);
+ }
+
+ writew(NFC_INPUT, &host->regs->nfc_config2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, spare_only);
+}
+
+/*
+ * Requests NANDFC to initated the transfer of data from the
+ * NAND device into in the NANDFC ram buffer.
+ */
+static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
+ int spare_only)
+{
+ MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
+
+ writew(buf_id, &host->regs->nfc_buf_addr);
+
+ /* Configure spare or page+spare access */
+ if (!host->pagesize_2k) {
+ uint32_t config1 = readw(&host->regs->nfc_config1);
+ if (spare_only)
+ config1 |= NFC_SP_EN;
+ else
+ config1 &= ~NFC_SP_EN;
+ writew(config1, &host->regs->nfc_config1);
+ }
+
+ writew(NFC_OUTPUT, &host->regs->nfc_config2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, spare_only);
+}
+
+/* Request the NANDFC to perform a read of the NAND device ID. */
+static void send_read_id(struct mxc_nand_host *host)
+{
+ uint16_t tmp;
+
+ /* NANDFC buffer 0 is used for device ID output */
+ writew(0x0, &host->regs->nfc_buf_addr);
+
+ /* Read ID into main buffer */
+ tmp = readw(&host->regs->nfc_config1);
+ tmp &= ~NFC_SP_EN;
+ writew(tmp, &host->regs->nfc_config1);
+
+ writew(NFC_ID, &host->regs->nfc_config2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, 0);
+}
+
+/*
+ * This function requests the NANDFC to perform a read of the
+ * NAND device status and returns the current status.
+ */
+static uint16_t get_dev_status(struct mxc_nand_host *host)
+{
+ void __iomem *main_buf = host->regs->main_area1;
+ uint32_t store;
+ uint16_t ret, tmp;
+ /* Issue status request to NAND device */
+
+ /* store the main area1 first word, later do recovery */
+ store = readl(main_buf);
+ /* NANDFC buffer 1 is used for device status */
+ writew(1, &host->regs->nfc_buf_addr);
+
+ /* Read status into main buffer */
+ tmp = readw(&host->regs->nfc_config1);
+ tmp &= ~NFC_SP_EN;
+ writew(tmp, &host->regs->nfc_config1);
+
+ writew(NFC_STATUS, &host->regs->nfc_config2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, 0);
+
+ /*
+ * Status is placed in first word of main buffer
+ * get status, then recovery area 1 data
+ */
+ ret = readw(main_buf);
+ writel(store, main_buf);
+
+ return ret;
+}
+
+/* This function is used by upper layer to checks if device is ready */
+static int mxc_nand_dev_ready(struct mtd_info *mtd)
+{
+ /*
+ * NFC handles R/B internally. Therefore, this function
+ * always returns status as ready.
+ */
+ return 1;
+}
+
+#ifdef CONFIG_MXC_NAND_HWECC
+static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ /*
+ * If HW ECC is enabled, we turn it on during init. There is
+ * no need to enable again here.
+ */
+}
+
+static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+
+ /*
+ * 1-Bit errors are automatically corrected in HW. No need for
+ * additional correction. 2-Bit errors cannot be corrected by
+ * HW ECC, so we need to return failure
+ */
+ uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);
+
+ if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
+ MTDDEBUG(MTD_DEBUG_LEVEL0,
+ "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+ u_char *ecc_code)
+{
+ return 0;
+}
+#endif
+
+static u_char mxc_nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+ uint8_t ret = 0;
+ uint16_t col;
+ uint16_t __iomem *main_buf =
+ (uint16_t __iomem *)host->regs->main_area0;
+ uint16_t __iomem *spare_buf =
+ (uint16_t __iomem *)host->regs->spare_area0;
+ union {
+ uint16_t word;
+ uint8_t bytes[2];
+ } nfc_word;
+
+ /* Check for status request */
+ if (host->status_request)
+ return get_dev_status(host) & 0xFF;
+
+ /* Get column for 16-bit access */
+ col = host->col_addr >> 1;
+
+ /* If we are accessing the spare region */
+ if (host->spare_only)
+ nfc_word.word = readw(&spare_buf[col]);
+ else
+ nfc_word.word = readw(&main_buf[col]);
+
+ /* Pick upper/lower byte of word from RAM buffer */
+ ret = nfc_word.bytes[host->col_addr & 0x1];
+
+ /* Update saved column address */
+ if (nand_chip->options & NAND_BUSWIDTH_16)
+ host->col_addr += 2;
+ else
+ host->col_addr++;
+
+ return ret;
+}
+
+static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+ uint16_t col, ret;
+ uint16_t __iomem *p;
+
+ MTDDEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_read_word(col = %d)\n", host->col_addr);
+
+ col = host->col_addr;
+ /* Adjust saved column address */
+ if (col < mtd->writesize && host->spare_only)
+ col += mtd->writesize;
+
+ if (col < mtd->writesize) {
+ p = (uint16_t __iomem *)(host->regs->main_area0 + (col >> 1));
+ } else {
+ p = (uint16_t __iomem *)(host->regs->spare_area0 +
+ ((col - mtd->writesize) >> 1));
+ }
+
+ if (col & 1) {
+ union {
+ uint16_t word;
+ uint8_t bytes[2];
+ } nfc_word[3];
+
+ nfc_word[0].word = readw(p);
+ nfc_word[1].word = readw(p + 1);
+
+ nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
+ nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
+
+ ret = nfc_word[2].word;
+ } else {
+ ret = readw(p);
+ }
+
+ /* Update saved column address */
+ host->col_addr = col + 2;
+
+ return ret;
+}
+
+/*
+ * Write data of length len to buffer buf. The data to be
+ * written on NAND Flash is first copied to RAMbuffer. After the Data Input
+ * Operation by the NFC, the data is written to NAND Flash
+ */
+static void mxc_nand_write_buf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+ int n, col, i = 0;
+
+ MTDDEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
+ len);
+
+ col = host->col_addr;
+
+ /* Adjust saved column address */
+ if (col < mtd->writesize && host->spare_only)
+ col += mtd->writesize;
+
+ n = mtd->writesize + mtd->oobsize - col;
+ n = min(len, n);
+
+ MTDDEBUG(MTD_DEBUG_LEVEL3,
+ "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
+
+ while (n > 0) {
+ void __iomem *p;
+
+ if (col < mtd->writesize) {
+ p = host->regs->main_area0 + (col & ~3);
+ } else {
+ p = host->regs->spare_area0 -
+ mtd->writesize + (col & ~3);
+ }
+
+ MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
+ __LINE__, p);
+
+ if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
+ union {
+ uint32_t word;
+ uint8_t bytes[4];
+ } nfc_word;
+
+ nfc_word.word = readl(p);
+ nfc_word.bytes[col & 3] = buf[i++];
+ n--;
+ col++;
+
+ writel(nfc_word.word, p);
+ } else {
+ int m = mtd->writesize - col;
+
+ if (col >= mtd->writesize)
+ m += mtd->oobsize;
+
+ m = min(n, m) & ~3;
+
+ MTDDEBUG(MTD_DEBUG_LEVEL3,
+ "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
+ __func__, __LINE__, n, m, i, col);
+
+ mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
+ col += m;
+ i += m;
+ n -= m;
+ }
+ }
+ /* Update saved column address */
+ host->col_addr = col;
+}
+
+/*
+ * Read the data buffer from the NAND Flash. To read the data from NAND
+ * Flash first the data output cycle is initiated by the NFC, which copies
+ * the data to RAMbuffer. This data of length len is then copied to buffer buf.
+ */
+static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+ int n, col, i = 0;
+
+ MTDDEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
+
+ col = host->col_addr;
+
+ /* Adjust saved column address */
+ if (col < mtd->writesize && host->spare_only)
+ col += mtd->writesize;
+
+ n = mtd->writesize + mtd->oobsize - col;
+ n = min(len, n);
+
+ while (n > 0) {
+ void __iomem *p;
+
+ if (col < mtd->writesize) {
+ p = host->regs->main_area0 + (col & ~3);
+ } else {
+ p = host->regs->spare_area0 -
+ mtd->writesize + (col & ~3);
+ }
+
+ if (((col | (int)&buf[i]) & 3) || n < 4) {
+ union {
+ uint32_t word;
+ uint8_t bytes[4];
+ } nfc_word;
+
+ nfc_word.word = readl(p);
+ buf[i++] = nfc_word.bytes[col & 3];
+ n--;
+ col++;
+ } else {
+ int m = mtd->writesize - col;
+
+ if (col >= mtd->writesize)
+ m += mtd->oobsize;
+
+ m = min(n, m) & ~3;
+ mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
+
+ col += m;
+ i += m;
+ n -= m;
+ }
+ }
+ /* Update saved column address */
+ host->col_addr = col;
+}
+
+/*
+ * Used by the upper layer to verify the data in NAND Flash
+ * with the data in the buf.
+ */
+static int mxc_nand_verify_buf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ u_char tmp[256];
+ uint bsize;
+
+ while (len) {
+ bsize = min(len, 256);
+ mxc_nand_read_buf(mtd, tmp, bsize);
+
+ if (memcmp(buf, tmp, bsize))
+ return 1;
+
+ buf += bsize;
+ len -= bsize;
+ }
+
+ return 0;
+}
+
+/*
+ * This function is used by upper layer for select and
+ * deselect of the NAND chip
+ */
+static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+
+ switch (chip) {
+ case -1:
+ /* TODO: Disable the NFC clock */
+ if (host->clk_act)
+ host->clk_act = 0;
+ break;
+ case 0:
+ /* TODO: Enable the NFC clock */
+ if (!host->clk_act)
+ host->clk_act = 1;
+ break;
+
+ default:
+ break;
+ }
+}
+
+/*
+ * Used by the upper layer to write command to NAND Flash for
+ * different operations to be carried out on NAND Flash
+ */
+static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
+ int column, int page_addr)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+
+ MTDDEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
+ command, column, page_addr);
+
+ /* Reset command state information */
+ host->status_request = false;
+
+ /* Command pre-processing step */
+ switch (command) {
+
+ case NAND_CMD_STATUS:
+ host->col_addr = 0;
+ host->status_request = true;
+ break;
+
+ case NAND_CMD_READ0:
+ host->col_addr = column;
+ host->spare_only = false;
+ break;
+
+ case NAND_CMD_READOOB:
+ host->col_addr = column;
+ host->spare_only = true;
+ if (host->pagesize_2k)
+ command = NAND_CMD_READ0; /* only READ0 is valid */
+ break;
+
+ case NAND_CMD_SEQIN:
+ if (column >= mtd->writesize) {
+ /*
+ * before sending SEQIN command for partial write,
+ * we need read one page out. FSL NFC does not support
+ * partial write. It alway send out 512+ecc+512+ecc ...
+ * for large page nand flash. But for small page nand
+ * flash, it does support SPARE ONLY operation.
+ */
+ if (host->pagesize_2k) {
+ /* call ourself to read a page */
+ mxc_nand_command(mtd, NAND_CMD_READ0, 0,
+ page_addr);
+ }
+
+ host->col_addr = column - mtd->writesize;
+ host->spare_only = true;
+
+ /* Set program pointer to spare region */
+ if (!host->pagesize_2k)
+ send_cmd(host, NAND_CMD_READOOB);
+ } else {
+ host->spare_only = false;
+ host->col_addr = column;
+
+ /* Set program pointer to page start */
+ if (!host->pagesize_2k)
+ send_cmd(host, NAND_CMD_READ0);
+ }
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ send_prog_page(host, 0, host->spare_only);
+
+ if (host->pagesize_2k) {
+ /* data in 4 areas datas */
+ send_prog_page(host, 1, host->spare_only);
+ send_prog_page(host, 2, host->spare_only);
+ send_prog_page(host, 3, host->spare_only);
+ }
+
+ break;
+ }
+
+ /* Write out the command to the device. */
+ send_cmd(host, command);
+
+ /* Write out column address, if necessary */
+ if (column != -1) {
+ /*
+ * MXC NANDFC can only perform full page+spare or
+ * spare-only read/write. When the upper layers
+ * layers perform a read/write buf operation,
+ * we will used the saved column adress to index into
+ * the full page.
+ */
+ send_addr(host, 0);
+ if (host->pagesize_2k)
+ /* another col addr cycle for 2k page */
+ send_addr(host, 0);
+ }
+
+ /* Write out page address, if necessary */
+ if (page_addr != -1) {
+ /* paddr_0 - p_addr_7 */
+ send_addr(host, (page_addr & 0xff));
+
+ if (host->pagesize_2k) {
+ send_addr(host, (page_addr >> 8) & 0xFF);
+ if (mtd->size >= 0x10000000) {
+ /* paddr_8 - paddr_15 */
+ send_addr(host, (page_addr >> 8) & 0xff);
+ send_addr(host, (page_addr >> 16) & 0xff);
+ } else {
+ /* paddr_8 - paddr_15 */
+ send_addr(host, (page_addr >> 8) & 0xff);
+ }
+ } else {
+ /* One more address cycle for higher density devices */
+ if (mtd->size >= 0x4000000) {
+ /* paddr_8 - paddr_15 */
+ send_addr(host, (page_addr >> 8) & 0xff);
+ send_addr(host, (page_addr >> 16) & 0xff);
+ } else {
+ /* paddr_8 - paddr_15 */
+ send_addr(host, (page_addr >> 8) & 0xff);
+ }
+ }
+ }
+
+ /* Command post-processing step */
+ switch (command) {
+
+ case NAND_CMD_RESET:
+ break;
+
+ case NAND_CMD_READOOB:
+ case NAND_CMD_READ0:
+ if (host->pagesize_2k) {
+ /* send read confirm command */
+ send_cmd(host, NAND_CMD_READSTART);
+ /* read for each AREA */
+ send_read_page(host, 0, host->spare_only);
+ send_read_page(host, 1, host->spare_only);
+ send_read_page(host, 2, host->spare_only);
+ send_read_page(host, 3, host->spare_only);
+ } else {
+ send_read_page(host, 0, host->spare_only);
+ }
+ break;
+
+ case NAND_CMD_READID:
+ host->col_addr = 0;
+ send_read_id(host);
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ break;
+
+ case NAND_CMD_STATUS:
+ break;
+
+ case NAND_CMD_ERASE2:
+ break;
+ }
+}
+
+int board_nand_init(struct nand_chip *this)
+{
+ struct system_control_regs *sc_regs =
+ (struct system_control_regs *)IMX_SYSTEM_CTL_BASE;
+ struct mtd_info *mtd;
+ uint16_t tmp;
+ int err = 0;
+
+ /* structures must be linked */
+ mtd = &host->mtd;
+ mtd->priv = this;
+ host->nand = this;
+
+ /* 5 us command delay time */
+ this->chip_delay = 5;
+
+ this->priv = host;
+ this->dev_ready = mxc_nand_dev_ready;
+ this->cmdfunc = mxc_nand_command;
+ this->select_chip = mxc_nand_select_chip;
+ this->read_byte = mxc_nand_read_byte;
+ this->read_word = mxc_nand_read_word;
+ this->write_buf = mxc_nand_write_buf;
+ this->read_buf = mxc_nand_read_buf;
+ this->verify_buf = mxc_nand_verify_buf;
+
+ host->regs = (struct nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
+ host->clk_act = 1;
+
+#ifdef CONFIG_MXC_NAND_HWECC
+ this->ecc.calculate = mxc_nand_calculate_ecc;
+ this->ecc.hwctl = mxc_nand_enable_hwecc;
+ this->ecc.correct = mxc_nand_correct_data;
+ this->ecc.mode = NAND_ECC_HW;
+ this->ecc.size = 512;
+ this->ecc.bytes = 3;
+ this->ecc.layout = &nand_hw_eccoob;
+ tmp = readw(&host->regs->nfc_config1);
+ tmp |= NFC_ECC_EN;
+ writew(tmp, &host->regs->nfc_config1);
+#else
+ this->ecc.layout = &nand_soft_eccoob;
+ this->ecc.mode = NAND_ECC_SOFT;
+ tmp = readw(&host->regs->nfc_config1);
+ tmp &= ~NFC_ECC_EN;
+ writew(tmp, &host->regs->nfc_config1);
+#endif
+
+ /* Reset NAND */
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /*
+ * preset operation
+ * Unlock the internal RAM Buffer
+ */
+ writew(0x2, &host->regs->nfc_config);
+
+ /* Blocks to be unlocked */
+ writew(0x0, &host->regs->nfc_unlockstart_blkaddr);
+ writew(0x4000, &host->regs->nfc_unlockend_blkaddr);
+
+ /* Unlock Block Command for given address range */
+ writew(0x4, &host->regs->nfc_wrprot);
+
+ /* NAND bus width determines access funtions used by upper layer */
+ if (readl(&sc_regs->fmcr) & NF_16BIT_SEL)
+ this->options |= NAND_BUSWIDTH_16;
+
+ host->pagesize_2k = 0;
+
+ return err;
+}