diff options
Diffstat (limited to 'drivers/net/fsl-mc/dpio/qbman_portal.h')
-rw-r--r-- | drivers/net/fsl-mc/dpio/qbman_portal.h | 157 |
1 files changed, 157 insertions, 0 deletions
diff --git a/drivers/net/fsl-mc/dpio/qbman_portal.h b/drivers/net/fsl-mc/dpio/qbman_portal.h new file mode 100644 index 0000000000..bb67c3bd06 --- /dev/null +++ b/drivers/net/fsl-mc/dpio/qbman_portal.h @@ -0,0 +1,157 @@ +/* + * Copyright (C) 2014 Freescale Semiconductor + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include "qbman_private.h" +#include <fsl-mc/fsl_qbman_portal.h> +#include <fsl-mc/fsl_dpaa_fd.h> + +/* All QBMan command and result structures use this "valid bit" encoding */ +#define QB_VALID_BIT ((uint32_t)0x80) + +/* Management command result codes */ +#define QBMAN_MC_RSLT_OK 0xf0 + +/* --------------------- */ +/* portal data structure */ +/* --------------------- */ + +struct qbman_swp { + const struct qbman_swp_desc *desc; + /* The qbman_sys (ie. arch/OS-specific) support code can put anything it + * needs in here. */ + struct qbman_swp_sys sys; + /* Management commands */ + struct { +#ifdef QBMAN_CHECKING + enum swp_mc_check { + swp_mc_can_start, /* call __qbman_swp_mc_start() */ + swp_mc_can_submit, /* call __qbman_swp_mc_submit() */ + swp_mc_can_poll, /* call __qbman_swp_mc_result() */ + } check; +#endif + uint32_t valid_bit; /* 0x00 or 0x80 */ + } mc; + /* Push dequeues */ + uint32_t sdq; + /* Volatile dequeues */ + struct { + /* VDQCR supports a "1 deep pipeline", meaning that if you know + * the last-submitted command is already executing in the + * hardware (as evidenced by at least 1 valid dequeue result), + * you can write another dequeue command to the register, the + * hardware will start executing it as soon as the + * already-executing command terminates. (This minimises latency + * and stalls.) With that in mind, this "busy" variable refers + * to whether or not a command can be submitted, not whether or + * not a previously-submitted command is still executing. In + * other words, once proof is seen that the previously-submitted + * command is executing, "vdq" is no longer "busy". TODO: + * convert this to "atomic_t" so that it is thread-safe (without + * locking). */ + int busy; + uint32_t valid_bit; /* 0x00 or 0x80 */ + /* We need to determine when vdq is no longer busy. This depends + * on whether the "busy" (last-submitted) dequeue command is + * targetting DQRR or main-memory, and detected is based on the + * presence of the dequeue command's "token" showing up in + * dequeue entries in DQRR or main-memory (respectively). Debug + * builds will, when submitting vdq commands, verify that the + * dequeue result location is not already equal to the command's + * token value. */ + struct ldpaa_dq *storage; /* NULL if DQRR */ + uint32_t token; + } vdq; + /* DQRR */ + struct { + uint32_t next_idx; + uint32_t valid_bit; + } dqrr; +}; + +/* -------------------------- */ +/* portal management commands */ +/* -------------------------- */ + +/* Different management commands all use this common base layer of code to issue + * commands and poll for results. The first function returns a pointer to where + * the caller should fill in their MC command (though they should ignore the + * verb byte), the second function commits merges in the caller-supplied command + * verb (which should not include the valid-bit) and submits the command to + * hardware, and the third function checks for a completed response (returns + * non-NULL if only if the response is complete). */ +void *qbman_swp_mc_start(struct qbman_swp *p); +void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, uint32_t cmd_verb); +void *qbman_swp_mc_result(struct qbman_swp *p); + +/* Wraps up submit + poll-for-result */ +static inline void *qbman_swp_mc_complete(struct qbman_swp *swp, void *cmd, + uint32_t cmd_verb) +{ + int loopvar; + + qbman_swp_mc_submit(swp, cmd, cmd_verb); + DBG_POLL_START(loopvar); + do { + DBG_POLL_CHECK(loopvar); + cmd = qbman_swp_mc_result(swp); + } while (!cmd); + return cmd; +} + +/* ------------ */ +/* qb_attr_code */ +/* ------------ */ + +/* This struct locates a sub-field within a QBMan portal (CENA) cacheline which + * is either serving as a configuration command or a query result. The + * representation is inherently little-endian, as the indexing of the words is + * itself little-endian in nature and layerscape is little endian for anything + * that crosses a word boundary too (64-bit fields are the obvious examples). + */ +struct qb_attr_code { + unsigned int word; /* which uint32_t[] array member encodes the field */ + unsigned int lsoffset; /* encoding offset from ls-bit */ + unsigned int width; /* encoding width. (bool must be 1.) */ +}; + +/* Macros to define codes */ +#define QB_CODE(a, b, c) { a, b, c} + +/* decode a field from a cacheline */ +static inline uint32_t qb_attr_code_decode(const struct qb_attr_code *code, + const uint32_t *cacheline) +{ + return d32_uint32_t(code->lsoffset, code->width, cacheline[code->word]); +} + +/* encode a field to a cacheline */ +static inline void qb_attr_code_encode(const struct qb_attr_code *code, + uint32_t *cacheline, uint32_t val) +{ + cacheline[code->word] = + r32_uint32_t(code->lsoffset, code->width, cacheline[code->word]) + | e32_uint32_t(code->lsoffset, code->width, val); +} + +/* ---------------------- */ +/* Descriptors/cachelines */ +/* ---------------------- */ + +/* To avoid needless dynamic allocation, the driver API often gives the caller + * a "descriptor" type that the caller can instantiate however they like. + * Ultimately though, it is just a cacheline of binary storage (or something + * smaller when it is known that the descriptor doesn't need all 64 bytes) for + * holding pre-formatted pieces of harware commands. The performance-critical + * code can then copy these descriptors directly into hardware command + * registers more efficiently than trying to construct/format commands + * on-the-fly. The API user sees the descriptor as an array of 32-bit words in + * order for the compiler to know its size, but the internal details are not + * exposed. The following macro is used within the driver for converting *any* + * descriptor pointer to a usable array pointer. The use of a macro (instead of + * an inline) is necessary to work with different descriptor types and to work + * correctly with const and non-const inputs (and similarly-qualified outputs). + */ +#define qb_cl(d) (&(d)->dont_manipulate_directly[0]) |