Age | Commit message (Collapse) | Author |
|
Fix handling quad-rank DIMMs in a system with two DIMM slots and first
slot supports both dual-rank DIMM and quad-rank DIMM.
For systems with quad-rank DIMM and double dual-rank DIMMs, cs_config
registers need to be enabled to maintain proper ODT operation. The
inactive CS should have bnds registers cleared.
Fix the turnaround timing for systems with all chip-selects enabled. This
wasn't an issue before because DDR was running lower than 1600MT/s with
this interleaving mode.
Fix DDR address calculation. It wasn't an issue until we have multiple
controllers with each more than 4GB and interleaving is disabled.
It also fixes the message of DDR: 2 GiB (DDR3, 64-bit, CL=0.5, ECC off)
when debugging DDR and first DDR controller is disabled. With the fix,
the first enabled controller information will be displayed.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
DDRC ver 4.7 adds DDR_SLOW bit in sdram_cfg_2 register. This bit needs to be
set for speed lower than 1250MT/s.
CDR1 and CDR2 are control driver registers. ODT termination valueis for
IOs are defined. Starting from DDRC 4.7, the decoding of ODT for IOs is
000 -> Termsel off
001 -> 120 Ohm
010 -> 180 Ohm
011 -> 75 Ohm
100 -> 110 Ohm
101 -> 60 Ohm
110 -> 70 Ohm
111 -> 47 Ohm
Add two write leveling registers. Each QDS now has its own write leveling
start value. In case of zero value, the value of QDS0 will be used. These
values are board-specific and are set in board files.
Extend DDR register timing_cfg_1 to have 4 bits for each field.
DDR control driver registers and write leveling registers are added to
interactive debugging for easy access.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
The multirate ethernet media access controller (mEMAC) interfaces to
10Gbps and below Ethernet/IEEE 802.3 networks via either RGMII/RMII
interfaces or XAUI/XFI/SGMII/QSGMII using the high-speed SerDes interface.
Signed-off-by: Sandeep Singh <Sandeep@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Add support for Freescale B4860 and variant SoCs. Features of B4860 are
(incomplete list):
Six fully-programmable StarCore SC3900 FVP subsystems, divided into three
clusters-each core runs up to 1.2 GHz, with an architecture highly
optimized for wireless base station applications
Four dual-thread e6500 Power Architecture processors organized in one
cluster-each core runs up to 1.8 GHz
Two DDR3/3L controllers for high-speed, industry-standard memory interface
each runs at up to 1866.67 MHz
MAPLE-B3 hardware acceleration-for forward error correction schemes
including Turbo or Viterbi decoding, Turbo encoding and rate matching,
MIMO MMSE equalization scheme, matrix operations, CRC insertion and
check, DFT/iDFT and FFT/iFFT calculations, PUSCH/PDSCH acceleration,
and UMTS chip rate acceleration
CoreNet fabric that fully supports coherency using MESI protocol between
the e6500 cores, SC3900 FVP cores, memories and external interfaces.
CoreNet fabric interconnect runs at 667 MHz and supports coherent and
non-coherent out of order transactions with prioritization and
bandwidth allocation amongst CoreNet endpoints.
Data Path Acceleration Architecture, which includes the following:
Frame Manager (FMan), which supports in-line packet parsing and general
classification to enable policing and QoS-based packet distribution
Queue Manager (QMan) and Buffer Manager (BMan), which allow offloading
of queue management, task management, load distribution, flow ordering,
buffer management, and allocation tasks from the cores
Security engine (SEC 5.3)-crypto-acceleration for protocols such as
IPsec, SSL, and 802.16
RapidIO manager (RMAN) - Support SRIO types 8, 9, 10, and 11 (inbound and
outbound). Supports types 5, 6 (outbound only)
Large internal cache memory with snooping and stashing capabilities for
bandwidth saving and high utilization of processor elements. The
9856-Kbyte internal memory space includes the following:
32 Kbyte L1 ICache per e6500/SC3900 core
32 Kbyte L1 DCache per e6500/SC3900 core
2048 Kbyte unified L2 cache for each SC3900 FVP cluster
2048 Kbyte unified L2 cache for the e6500 cluster
Two 512 Kbyte shared L3 CoreNet platform caches (CPC)
Sixteen 10-GHz SerDes lanes serving:
Two Serial RapidIO interfaces. Each supports up to 4 lanes and a total
of up to 8 lanes
Up to 8-lanes Common Public Radio Interface (CPRI) controller for glue-
less antenna connection
Two 10-Gbit Ethernet controllers (10GEC)
Six 1G/2.5-Gbit Ethernet controllers for network communications
PCI Express controller
Debug (Aurora)
Two OCeaN DMAs
Various system peripherals
182 32-bit timers
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Add support for Freescale T4240 SoC. Feature of T4240 are
(incomplete list):
12 dual-threaded e6500 cores built on Power Architecture® technology
Arranged as clusters of four cores sharing a 2 MB L2 cache.
Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture
v2.06-compliant)
Three levels of instruction: user, supervisor, and hypervisor
1.5 MB CoreNet Platform Cache (CPC)
Hierarchical interconnect fabric
CoreNet fabric supporting coherent and non-coherent transactions with
prioritization and bandwidth allocation amongst CoreNet end-points
1.6 Tbps coherent read bandwidth
Queue Manager (QMan) fabric supporting packet-level queue management and
quality of service scheduling
Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
support
Memory prefetch engine (PMan)
Data Path Acceleration Architecture (DPAA) incorporating acceleration for
the following functions:
Packet parsing, classification, and distribution (Frame Manager 1.1)
Queue management for scheduling, packet sequencing, and congestion
management (Queue Manager 1.1)
Hardware buffer management for buffer allocation and de-allocation
(BMan 1.1)
Cryptography acceleration (SEC 5.0) at up to 40 Gbps
RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps
Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps
DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0)
32 SerDes lanes at up to 10.3125 GHz
Ethernet interfaces
Up to four 10 Gbps Ethernet MACs
Up to sixteen 1 Gbps Ethernet MACs
Maximum configuration of 4 x 10 GE + 8 x 1 GE
High-speed peripheral interfaces
Four PCI Express 2.0/3.0 controllers
Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with
Type 11 messaging and Type 9 data streaming support
Interlaken look-aside interface for serial TCAM connection
Additional peripheral interfaces
Two serial ATA (SATA 2.0) controllers
Two high-speed USB 2.0 controllers with integrated PHY
Enhanced secure digital host controller (SD/MMC/eMMC)
Enhanced serial peripheral interface (eSPI)
Four I2C controllers
Four 2-pin or two 4-pin UARTs
Integrated Flash controller supporting NAND and NOR flash
Two eight-channel DMA engines
Support for hardware virtualization and partitioning enforcement
QorIQ Platform's Trust Architecture 1.1
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
The T4 has added devices to previous corenet implementations:
* SEC has 3 more DECO units
* New PMAN device
* New DCE device
This doesn't add full support for the new devices. Just some
preliminary support.
Move PMAN LIODN to upper half of register
Despite having only one LIODN, the PMAN LIODN is stored in the
upper half of the register. Re-use the 2-LIODN code and just
set the LIODN as if the second one is 0. This results in the
actual LIODN being written to the upper half of the register.
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Add code for configuring VSC3316/3308 crosspoint switches
Add README to understand the APIs
- VSC 3316/3308 is a low-power, low-cost asynchronous crosspoint switch
capable of data rates upto 11.5Gbps. VSC3316 has 16 input and 16
output ports whereas VSC3308 has 8 input and 8 output ports.
Programming of these devices are performed by two-wire or four-wire
serial interface.
Signed-off-by: Shaveta Leekha <shaveta@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Corenet 2nd generation Chassis doesn't have ddr_sync bit in RCW. Only
async mode is supported.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Create new files to handle 2nd generation Chassis as the registers are
organized differently.
- Add SerDes protocol parsing and detection
- Add support of 4 SerDes
- Add CPRI protocol in fsl_serdes.h
The Common Public Radio Interface (CPRI) is publicly available
specification that standardizes the protocol interface between the
radio equipment control (REC) and the radio equipment (RE) in wireless
basestations. This allows interoperability of equipment from different
vendors,and preserves the software investment made by wireless service
providers.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Corenet 2nd generation Chassis has different RCW and registers for SerDes.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
The QCSP registers are expanded and moved from offset 0 to offset 0x1000
for SoCs with QMan v3.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Expand the reference clock select to three bits
000: 100 MHz
001: 125 MHz
010: 156.25MHz
011: 150 MHz
100: 161.1328125 MHz
All others reserved
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Corenet based SoCs have different core clocks starting from Chassis
generation 2. Cores are organized into clusters. Each cluster has up to
4 cores sharing same clock, which can be chosen from one of three PLLs in
the cluster group with one of the devisors /1, /2 or /4. Two clusters are
put together as a cluster group. These two clusters share the PLLs but may
have different divisor. For example, core 0~3 are in cluster 1. Core 4~7
are in cluster 2. Core 8~11 are in cluster 3 and so on. Cluster 1 and 2
are cluster group A. Cluster 3 and 4 are in cluster group B. Cluster group
A has PLL1, PLL2, PLL3. Cluster group B has PLL4, PLL5. Core 0~3 may have
PLL1/2, core 4~7 may have PLL2/2. Core 8~11 may have PLL4/1.
PME and FMan blocks can take different PLLs, configured by RCW.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Panic if the number of cores is more than CONFIG_MAX_CPUS because it will
surely overflow gd structure.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Chassis generation 2 has different mask and shift. Use macro instead of
magic numbers.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Using E6500 L1 cache as initram requires L2 cache enabled.
Add l2-cache cluster enabling.
Setup stash id for L1 cache as (coreID) * 2 + 32 + 0
Setup stash id for L2 cache as (cluster) * 2 + 32 + 1
Stash id for L2 is only set for Chassis 2.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
These assembly macros simplify codes to add and delete temporary TLB entries.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
FSL_HW_PORTAL_PME is used even when CONFIG_SYS_DPAA_PME is not defined.
Remove the #ifdef.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Fix compiling error in case CONFIG_SYS_PCIE2_MEM_VIRT or CONFIG_SYS_PCIE3_MEM_VIRT
not defined.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
According to new QIXIS system definition, update QIXIS registers set
to add present2 register instead of obsolete ctl_sys2.
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Add support for the Freescale P5040 SOC, which is similar to the P5020.
Features of the P5040 are:
Four P5040 single-threaded e5500 cores built
Up to 2.4 GHz with 64-bit ISA support
Three levels of instruction: user, supervisor, hypervisor
CoreNet platform cache (CPC)
2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric
Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
support Up to 1600MT/s
Memory pre-fetch engine
DPAA incorporating acceleration for the following functions
Packet parsing, classification, and distribution (FMAN)
Queue management for scheduling, packet sequencing and
congestion management (QMAN)
Hardware buffer management for buffer allocation and
de-allocation (BMAN)
Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes
20 lanes at up to 5 Gbps
Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces
Two 10 Gbps Ethernet MACs
Ten 1 Gbps Ethernet MACs
High-speed peripheral interfaces
Two PCI Express 2.0/3.0 controllers
Additional peripheral interfaces
Two serial ATA (SATA 2.0) controllers
Two high-speed USB 2.0 controllers with integrated PHY
Enhanced secure digital host controller (SD/MMC/eMMC)
Enhanced serial peripheral interface (eSPI)
Two I2C controllers
Four UARTs
Integrated flash controller supporting NAND and NOR flash
DMA
Dual four channel
Support for hardware virtualization and partitioning enforcement
Extra privileged level for hypervisor support
QorIQ Trust Architecture 1.1
Secure boot, secure debug, tamper detection, volatile key storage
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Add a new device tree property named "fsl,liodn-offset-list"
holding a list of per pci endpoint permitted liodn offsets.
This property is useful in virtualization scenarios
that implement per pci endpoint partitioning.
The final liodn of a partitioned pci endpoint is
calculated by the hardware, by adding these offsets
to pci controller's base liodn, stored in the
"fsl,liodn" property of its node.
The liodn offsets are interleaved to get better cache
utilization. As an example, given 3 pci controllers,
the following liodns are generated for the pci endpoints:
pci0: 193 256 259 262 265 268 271 274 277
pci1: 194 257 260 263 266 269 272 275 278
pci2: 195 258 261 264 267 270 273 276 279
Signed-off-by: Laurentiu Tudor <Laurentiu.Tudor@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
The P5040 does not have SRIO, so don't put the SRIO definitions in
corenet_ds.h. They belong in the board-specific header files.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
The P5040 does not have SRIO support, so there are no SRIO LIODNs.
Therefore, the functions that set the SRIO LIODNs should not be compiled.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
The liodn for the new PCIE controller included in P5040DS is no longer set
through a register in the guts register block but with one in the PCIE
register block itself. Update the PCIE CCSR structure to add the new liodn
register and add a new dedicated SET_PCI_LIODN_BASE macro that puts
the liodn in the correct register.
Signed-off-by: Laurentiu Tudor <Laurentiu.Tudor@freescale.com>
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Commit 709389b6 unintentionally used the Unicode version of the
apostrophy. Replace it with the normal ASCII version.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Erratum: A-004034
Affects: SRIO
Description: During port initialization, the SRIO port performs
lane synchronization (detecting valid symbols on a lane) and
lane alignment (coordinating multiple lanes to receive valid data
across lanes). Internal errors in lane synchronization and lane
alignment may cause failure to achieve link initialization at
the configured port width.
An SRIO port configured as a 4x port may see one of these scenarios:
1. One or more lanes fails to achieve lane synchronization.
Depending on which lanes fail, this may result in downtraining
from 4x to 1x on lane 0, 4x to 1x on lane R (redundant lane).
2. The link may fail to achieve lane alignment as a 4x, even
though all 4 lanes achieve lane synchronization, and downtrain
to a 1x. An SRIO port configured as a 1x port may fail to complete
port initialization (PnESCSR[PU] never deasserts) because of
scenario 1.
Impact: SRIO port may downtrain to 1x, or may fail to complete
link initialization. Once a port completes link initialization
successfully, it will operate normally.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Fix usb device-tree fixup:
- wrong modification of dr_mode and phy_type when
"usb1" is not mentioned inside hwconfig string;
now allows hwconfig strings like:
"usb2:dr_mode=host,phy_type=ulpi"
- add warning message for using usb_dr_mode
and usb_phy_type env variables (if either is used)
Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Remove unused CONFIG_DRIVER_SMC91111,CONFIG_DRIVER_LAN91C96,
if required implement smc_set_mac_addr() in board init.
Signed-off-by: Ashok Kumar Reddy <ashokkourla2000@gmail.com>
Acked-by: Tom Rini <trini@ti.com>
|
|
CONFIG_DRIVER_LAN91C96 is obsolete.
Rename CONFIG_DRIVER_LAN91C96 to CONFIG_LAN91C9 as
CONFIG_DRIVER_LAN91C96 is obsolete.
Signed-off-by: Ashok Kumar Reddy <ashokkourla2000@gmail.com>
|
|
CONFIG_DRIVER_LAN91C96 to CONFIG_LAN91C96
Rename CONFIG_DRIVER_SMC91111 to CONFIG_SMC91111,
CONFIG_DRIVER_LAN91C96 to CONFIG_LAN91C96
Signed-off-by: Ashok Kumar Reddy <ashokkourla2000@gmail.com>
Reviewed-by: Tom Rini <trini@ti.com>
|
|
Enable Coreboot and EXT4 Filesystems on the coreboot board.
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
This change adds CBFS support and some commands to use it to u-boot. These
commands are:
cbfsinit - Initialize CBFS support and pull all metadata into RAM. The end of
the ROM is an optional parameter which defaults to the standard 0xffffffff and
can be used to support multiple CBFSes in a system. The last one set up with
cbfsinit is the one that will be used.
cbfsinfo - Print information from the CBFS header.
cbfsls - Print out the size, type, and name of all the files in the current
CBFS. Recognized types are translated into symbolic names.
cbfsload - Load a file from CBFS into memory. Like the similar command for fat
filesystems, you can optionally provide a maximum size.
Support for CBFS is compiled in when the CONFIG_CMD_CBFS option is specified.
The CBFS driver can also be used programmatically from within u-boot.
If u-boot needs something out of CBFS very early before the heap is
configured, it won't be able to use the normal CBFS support which caches some
information in memory it allocates from the heap. The
cbfs_file_find_uncached function searches a CBFS instance without touching
the heap.
Signed-off-by: Gabe Black <gabeblack@google.com>
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
This change addresses a few printf-formatting errors, and a typecast
error.
Signed-off-by: Taylor Hutt <thutt@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
Currently, if the disk partition code is compiled with all of the parition
types compiled out, it hits an #error which stops the build. This change
adjusts that file so that those functions will fall through to their defaults
in those cases instead of breaking the build. These functions are needed
because other code calls them, and that code is needed because other config
options are overly broad and bring in support we don't need along with
support we do.
Also reduce repetition of the 6-term #ifdef throughout the file.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
The size of an LBA type changes depending on this option. We need to
use a different printf() string in each case, so create a define for
this.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
Implement kerneldoc template for linker-generated arrays. This is
the first template in U-Boot that is used to generate kerneldoc
style documentation. This template is very basic.
Signed-off-by: Marek Vasut <marex@denx.de>
|
|
The command declaration now uses the new LG-array method to generate
list of commands. Thus the __u_boot_cmd section is now superseded and
redundant and therefore can be removed. Also, remove externed symbols
associated with this section from include/command.h .
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Joe Hershberger <joe.hershberger@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
|
|
This patch converts the old method of creating a list of command
onto the new LG-arrays code. The old u_boot_cmd section is converted
to new u_boot_list_cmd subsection and LG-array macros used as needed.
Minor adjustments had to be made to the common code to work with the
LG-array macros, mostly the fixup_cmdtable() calls are now passed the
ll_entry_start and ll_entry_count instead of linker-generated symbols.
The command.c had to be adjusted as well so it would use the newly
introduced LG-array API instead of directly using linker-generated
symbols.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Joe Hershberger <joe.hershberger@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
|
|
Add section for the linker-generated lists into all possible linker
files, so that everyone can easily use these lists. This is mostly
a mechanical adjustment.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Joe Hershberger <joe.hershberger@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
|
|
This patch adds support for linker-generated array. These arrays
are a generalization of the U-Boot command declaration approach.
Basically, the idea is to generate an array, where elements of the
array are statically initialized at compile time and each element
is declared separatelly at different place. Such array is assembled
together into continuous piece of memory by linker and a pointer to
it's first entry can then be retrieved via accessor.
The actual implementation relies on placing any variable that is to
represent an element of LG-array into particular subsection of the
.u_boot_list linker section . The subsection is determined by user
options. Once compiled, it is possible to dump all symbols placed
in .u_boot_list section and the subsections in which they should be
and generate appropriate bounds for each requested subsection of the
.u_boot_list section. Each such subsection thus contains __start and
__end entries at the begining and end respecitively.
This allows for simple run-time traversing of the array, since the
symbols are properly defined.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Joe Hershberger <joe.hershberger@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
|
|
This patch adds essential components for generation of the contents of
the linker section that is used by the linker-generated array. All of
the contents is held in a separate file, u-boot.lst, which is generated
at runtime just before U-Boot is linked.
The purpose of this code is to especially generate the appropriate
boundary symbols around each subsection in the section carrying the
linker-generated arrays. Obviously, the interim linker code for actual
placement of the variables into the section is generated too. The
generated file, u-boot.lst, is included into u-boot.lds via the linker
INCLUDE directive in u-boot.lds .
Adjustments are made in the Makefile and spl/Makefile so that the
u-boot.lds and u-boot-spl.lds depend on their respective .lst files.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Joe Hershberger <joe.hershberger@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Acked-by: Joe Hershberger <joe.hershberger@ni.com>
Tested-by: Joe Hershberger <joe.hershberger@ni.com>
|
|
P4080 Rev3.0 fixes ESDHC13 errata, so update the code to make the
workaround conditional.
In formal release document, the errata number should be ESDHC13 instead
of ESDHC136.
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
QIXIS FPGA layout defines the address of registers but The actual register bit
implementation is board-specific,
So avoid use of magic numbers as it may vary across different boards's QIXIS
FPGA implementation.
Also, Avoid board specific defines in common/qixis.h
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
We should only write TSR_WIS to the SPRN_TSR register in
reset_85xx_watchdog.
The old code would cause the timer interrupt to be acknowledged when the
watchdog was reset, and we would then get no more timer interrupts.
This bug would affect all mpc85xx boards that have the watchdog enabled.
Signed-off-by: Mark Marshall <Mark.Marshall@omicron.at>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Users of familiar with the Linux gpiolib API expect that value parameter
to gpio_direction_output reflects the initial state of the output pin.
gpio_direction_output was always driving the output low, now it drives
it high or low according to the value provided.
Signed-off-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Cc: Kyle Moffett <Kyle.D.Moffett@boeing.com>
Cc: Andy Fleming <afleming@gmail.com>
Cc: Peter Tyser <ptyser@xes-inc.com>
Cc: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
The original code uses 'Programming Interface' field to judge if PCIE is
EP or RC mode, however, T4240 does not support this functionality.
According to PCIE specification, 'Header Type' offset 0x0e is used to
indicate header type, so for PCIE controller, the patch changes code to
use 'Header Type' field to identify if the PCIE is EP or RC mode.
Signed-off-by: Minghuan Lian <Minghuan.Lian@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Support the DesginWare MMC Controller.
Signed-off-by: Jaehoon Chung <jh80.chung@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Rajeshawari Shinde <rajeshwari.s@samsung.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
This driver is no longer used and it's remaining users were converted
to the new generic PXA MMC driver. Thus, remove this driver.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Andy Fleming <afleming@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|