summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/tegra210/clock.c
AgeCommit message (Collapse)Author
2016-09-27ARM: tegra: add APIs the clock uclass driver will needStephen Warren
A future patch will implement a clock uclass driver for Tegra. That driver will call into Tegra's existing clock code to simplify the transition; this avoids tieing the clock uclass patches into significant refactoring of the existing custom clock API implementation. Some of the Tegra clock APIs that manipulate peripheral clocks require both the peripheral clock ID and parent clock ID to be passed in together. However, the clock uclass API does not require any such "parent" parameter, so the clock driver must determine this information itself. This patch implements new Tegra- specific clock API clock_get_periph_parent() for this purpose. The new API is implemented in the core Tegra clock code rather than SoC- specific clock code. The implementation uses various SoC-/clock-specific data. That data is only available in SoC-specific clock code. Consequently, two new internal APIs are added that enable the core clock code to retrieve this information from the SoC-specific clock code. Due to the structure of the Tegra clock code, this leads to some unfortunate code duplication. However, this situation predates this patch. Ideally, future work will de-duplicate the Tegra clock code, and migrate it into drivers/clk/tegra. However, such refactoring is kept separate from this series. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
2016-09-27ARM: tegra: add peripheral clock init tableStephen Warren
Currently, Tegra peripheral drivers control two aspects of their HW module clock(s): 1) The clock enable/rate for the peripheral clock itself. 2) The system-level clock tree setup, i.e. the clock parent. Aspect 1 is reasonable, but aspect 2 is a system-level decision, not something that an individual peripheral driver should in general know about or influence. Such system-level knowledge ties the driver to a specific SoC implementation, even when they use generic APIs for clock manipulation, since they must have SoC-specific knowledge such as parent clock IDs. Limited exceptions exist, such as where peripheral HW is expected to dynamically switch between clock sources at run-time, such as CPU clock scaling or display clock conflict management in a multi-head scenario. This patch enhances the Tegra core code to perform system-level clock tree setup, in a similar fashion to the Linux kernel Tegra clock driver. This will allow future patches to simplify peripheral drivers by removing the clock parent setup logic. This change is required prior to converting peripheral drivers to use the standard clock APIs, since: 1) The clock uclass doesn't currently support a set_parent() operation. Adding one is possible, but not necessary at the moment. 2) The clock APIs retrieve all clock IDs from device tree, and the DT bindings for almost all peripherals only includes information about the relevant peripheral clocks, and not any potential parent clocks. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
2016-03-29ARM: tegra210: set PLLE_PTS bit when enabling PLLEStephen Warren
This bit needs to be set for system suspend/resume to work. This setting will be documented in an updated TRM at some time in the future. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
2015-11-12ARM: tegra210: implement PLLE init procedure from TRMStephen Warren
Implement the procedure that the TRM mandates to initialize PLLREFE and PLLE. This makes the PLL actually lock. Note that this section of the TRM is being cleaned up to remove some confusion. The set of register accesses in this patch should be final, although the step numbers/descriptions might still change. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
2015-09-16ARM: tegra: clk_m is the architected timer source clockThierry Reding
While clk_m and the oscillator run at the same frequencies on Tegra114 and Tegra124, clk_m is the proper source for the architected timer. On more recent Tegra generations, Tegra210 and later, both the oscillator and clk_m can run at different frequencies. clk_m will be divided down from the oscillator. Signed-off-by: Thierry Reding <treding@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
2015-09-16ARM: tegra: Implement clk_mThierry Reding
On currently supported SoCs, clk_m always runs at the same frequency as the oscillator input. However newer SoC generations such as Tegra210 no longer have that restriction. Prepare for that by separating clk_m from the oscillator clock and allow SoC code to override the clk_m rate. Signed-off-by: Thierry Reding <treding@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
2015-08-13tegra: Correct logic for reading pll_misc in clock_start_pll()Simon Glass
The logic for simple PLLs on T124 was broken by this commit: 722e000c Tegra: PLL: use per-SoC pllinfo table instead of PLL_DIVM/N/P, etc. Correct it by reading from the same pll_misc register that it writes to and adding an entry for the DP PLL in the pllinfo table. Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Tom Warren <twarren@nvidia.com>
2015-08-05Tegra: PLL: use per-SoC pllinfo table instead of PLL_DIVM/N/P, etc.Tom Warren
Added PLL variables (dividers mask/shift, lock enable/detect, etc.) to new pllinfo struct for each Soc/PLL. PLLA/C/D/E/M/P/U/X. Used pllinfo struct in all clock functions, validated on T210. Should be equivalent to prior code on T124/114/30/20. Thanks to Marcel Ziswiler for corrections to the T20/T30 values. Signed-off-by: Marcel Ziswiler <marcel.ziswiler@toradex.com> Tested-by: Marcel Ziswiler <marcel.ziswiler@toradex.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
2015-08-05Tegra: clocks: Add 38.4MHz OSC support for T210 useTom Warren
Added 38.4MHz/48MHz entries to pll_x_table for CPU PLL. Needs to be measured - should be close to 700MHz (1.4G/2). Note that some freqs aren't in the PLLU table in T210 TRM (13, 26MHz), so I used the 12MHz table entry for them. They shouldn't be selected since they're not viable T210 OSC freqs. Since there are now 2 new OSC defines, all tables (pll_x_table, PLLU) had to increase by two entries, but since 38.4/48MHz are not viable osc freqs on T20/30/114, etc, they're just set to 0. Signed-off-by: Tom Warren <twarren@nvidia.com>
2015-07-28ARM: Tegra210: Add SoC code/include files for T210Tom Warren
All based off of Tegra124. As a Tegra210 board is brought up, these may change a bit to match the HW more closely, but probably 90% of this is identical to T124. Note that since T210 is a 64-bit build, it has no SPL component, and hence no cpu.c for Tegra210. Signed-off-by: Tom Warren <twarren@nvidia.com>