Age | Commit message (Collapse) | Author |
|
The TIMING_CFG_3[EXT_ACTTOPRE] register field is 2 bits wide, but
the mask omitted the LSB. This patch provides a 2-bit wide mask.
Signed-off-by: James Yang <James.Yang@freescale.com>
Signed-off-by: York Sun <yorksun@freescale.com>
|
|
The Freescale C29x family is a high performance crypto co-processor.
It combines a single e500v2 core with necessary SEC engine. There're
three SoC types(C291, C292, C293) with the following features:
- 512K L2 Cache/SRAM and 512 KB platform SRAM
- DDR3/DDR3L 32bit DDR controller
- One PCI express (x1, x2, x4) Gen 2.0 Controller
- Trust Architecture 2.0
- SEC6.0 engine
Signed-off-by: Mingkai Hu <Mingkai.Hu@freescale.com>
Signed-off-by: Po Liu <Po.Liu@freescale.com>
|
|
JEDEC spec requires the clocks to be stable before deasserting reset
signal for RDIMMs. Clocks start when any chip select is enabled and
clock control register is set. This patch also adds the interface to
toggle memory reset signal if needed by the boards.
Signed-off-by: York Sun <yorksun@freescale.com>
|
|
On selected platforms, x4 DDR devices can be supported. Using x4 devices may
lower the performance, but generally they are available for higher density.
Tested on MT36JSF2G72PZ-1G9E1 RDIMM.
Signed-off-by: York Sun <yorksun@freescale.com>
|
|
When chip select interleaving is enabled, cs0_bnds is used for address
binding. Other csn_bnds are not used. When two controllers interleaving is
enabled, cs0_bnds of both controllers are used, other csn_bnds are not.
However, the unused csn_bnds may be used internally for calculating
addresses for calibration. Setting those registers to 0 may confuse
controllers in some cases. Instead, setting them to 0xffffffff together
with normal LAWs will guarantee the address is not mapped to DDR.
Signed-off-by: York Sun <yorksun@freescale.com>
|
|
Prepare for emulator support for mpc85xx parts.
Disable DDR training and skip wrlvl_cntl_2 and wrlvl_cntl_3 registers.
These two registers improve stability but not supported by emulator.
Add CONFIG_FSL_TBCLK_EXTRA_DIV for possible adjustment to time base.
Signed-off-by: York Sun <yorksun@freescale.com>
|
|
Signed-off-by: Wolfgang Denk <wd@denx.de>
[trini: Fixup common/cmd_io.c]
Signed-off-by: Tom Rini <trini@ti.com>
|
|
Calculate reserved fields according to IFC bank count
1. Move csor_ext register behind csor register and fix res offset
2. Move ifc bank count to config_mpc85xx.h to support 8 bank count
3. Guard fsl_ifc.h with CONFIG_FSL_IFC macro to eliminate the compile
error on some devices that does not have IFC controller.
Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Currently, the macro "CONFIG_SYS_FSL_SRIO_PCIE_BOOT_MASTER" can enable
the master module of Boot from SRIO and PCIE on a platform. But this
is not a silicon feature, it's just a specific booting mode based on
the SRIO and PCIE interfaces. So it's inappropriate to put the macro
into the file arch/powerpc/include/asm/config_mpc85xx.h.
Change the macro "CONFIG_SYS_FSL_SRIO_PCIE_BOOT_MASTER" to
"CONFIG_SRIO_PCIE_BOOT_MASTER", remove them from
arch/powerpc/include/asm/config_mpc85xx.h file, and add those macros
in configuration header file of each board which can support the
master module of Boot from SRIO and PCIE.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
IFC errata A003399 is valid for IFC NOR boot i.e.if no on-board NOR flash or
no NOR boot, do not compile its workaround.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Allow DDR clock runs faster than SPD specifes. This may cause memory
failure, but the user should know what is going to happen when using
higher than expected DDR clock.
Signed-off-by: Ed Swarthout <Ed.Swarthout@freescale.com>
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
To align with chassis generation 2 spec, all cores are numbered in sequence.
The cores may reside across multiple clusters. Each cluster has zero to four
cores. The first available core is numbered as core 0. The second available
core is numbered as core 1 and so on.
Core clocks are generated by each clusters. To identify the cluster of each
core, topology registers are examined.
Cluster clock registers are reorganized to be easily indexed.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
T1040 and variants have e5500 cores and are compliant to QorIQ Chassis
Generation 2. The major difference between T1040 and its variants is the
number of cores and the number of L2 switch ports.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
This gives boards flexibility to assign other than default addresses to each
DDR controller. For example, DDR controler 2 can have 0 as the base and DDR
controller 1 has higher memory.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
T4160 SoC is low power version of T4240. The T4160 combines eight dual
threaded Power Architecture e6500 cores and two memory complexes (CoreNet
platform cache and DDR3 memory controller) with the same high-performance
datapath acceleration, networking, and peripheral bus interfaces.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Should check if interleaving is enabled before using interleaving mode.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Fix USB device-tree fixup to properly handle device-tree fixup and
print appropriate message when wrong/junk "dr_mode" or "phy_type"
are mentioned in hwconfig string
Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com>
|
|
Move this field into arch_global_data and tidy up.
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
Move these fields into arch_global_data and tidy up.
Signed-off-by: Simon Glass <sjg@chromium.org>
[trini: Update for bsc9132qds.c, b4860qds.c]
Signed-off-by: Tom Rini <trini@ti.com>
|
|
If property 'fsl,sec-era' is already present, it is updated.
This property is required so that applications can ascertain which
descriptor commands are supported on a particular CAAM version.
Signed-off-by: Vakul Garg <vakul@freescale.com>
Cc: Andy Fleming <afleming@gmail.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Configuring custom memory init value using CONFIG_MEM_INIT_VALUE in
the board config file doesn't work and memory is always initialized
to the value 0xdeadbeef. Only use this default value if a board doesn't
define CONFIG_MEM_INIT_VALUE.
Signed-off-by: Anatolij Gustschin <agust@denx.de>
Cc: Andy Fleming <afleming@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
The BSC9132 is a highly integrated device that targets the evolving
Microcell, Picocell, and Enterprise-Femto base station market subsegments.
The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850
core technologies with MAPLE-B2P baseband acceleration processing elements
to address the need for a high performance, low cost, integrated solution
that handles all required processing layers without the need for an
external device except for an RF transceiver or, in a Micro base station
configuration, a host device that handles the L3/L4 and handover between
sectors.
The BSC9132 SoC includes the following function and features:
- Power Architecture subsystem including two e500 processors with
512-Kbyte shared L2 cache
- Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2
cache
- 32 Kbyte of shared M3 memory
- The Multi Accelerator Platform Engine for Pico BaseStation Baseband
Processing (MAPLE-B2P)
- Two DDR3/3L memory interfaces with 32-bit data width (40 bits including
ECC), up to 1333 MHz data rate
- Dedicated security engine featuring trusted boot
- Two DMA controllers
- OCNDMA with four bidirectional channels
- SysDMA with sixteen bidirectional channels
- Interfaces
- Four-lane SerDes PHY
- PCI Express controller complies with the PEX Specification-Rev 2.0
- Two Common Public Radio Interface (CPRI) controller lanes
- High-speed USB 2.0 host and device controller with ULPI interface
- Enhanced secure digital (SD/MMC) host controller (eSDHC)
- Antenna interface controller (AIC), supporting four industry
standard JESD207/four custom ADI RF interfaces
- ADI lanes support both full duplex FDD support & half duplex TDD
- Universal Subscriber Identity Module (USIM) interface that
facilitates communication to SIM cards or Eurochip pre-paid phone
cards
- Two DUART, two eSPI, and two I2C controllers
- Integrated Flash memory controller (IFC)
- GPIO
- Sixteen 32-bit timers
Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
This patch adds the ability for the FSL DDR interactive debugger to
automatically run the sequence of commands stored in the ddr_interactive
environment variable. Commands are separated using ';'.
ddr_interactive=compute; edit c0 d0 dimmparms caslat_X 0x3FC0; go
Signed-off-by: James Yang <James.Yang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Add copy command which allows copying of DIMM/controller settings.
This saves tedious retyping of parameters for each identical DIMM
or controller.
Signed-off-by: James Yang <James.Yang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
This fix allows the name of the stage to be specifed after the
controler and DIMM is specified. Prior to this fix, if the
data stage name is not the first entry on the command line,
the operation is applied to all controller and DIMMs.
Signed-off-by: James Yang <James.Yang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Move the FSL DDR prompt command parsing to a separate function
so that it can be reused.
Signed-off-by: James Yang <James.Yang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Using environmental variable "ddr_interactive" to activate interactive DDR
debugging seomtiems is not enough. For example, after updating SPD with a
valid but wrong image, u-boot won't come up due to wrong DDR configuration.
By enabling key press method, we can enter debug mode to have a chance to
boot without using other tools to recover the board.
CONFIG_FSL_DDR_INTERACTIVE needs to be defined in header file. To enter the
debug mode by key press, press key 'd' shortly after reset, like one would
do to abort auto booting. It is fixed to lower case 'd' at this moment.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
by moving compat_strlist into the .bss section.
0xfe004d80 fdt_fixup_crypto_node [u-boot]: 264
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
There were a number of shared files that were using
CONFIG_SYS_MPC85xx_DDR_ADDR, or CONFIG_SYS_MPC86xx_DDR_ADDR, and
several variants (DDR2, DDR3). A recent patchset added
85xx-specific ones to code which was used by 86xx systems.
After reviewing places where these constants were used, and
noting that the type definitions of the pointers assigned to
point to those addresses were the same, the cleanest approach
to fixing this problem was to unify the namespace for the
85xx, 83xx, and 86xx DDR address definitions.
This patch does:
s/CONFIG_SYS_MPC8.xx_DDR/CONFIG_SYS_MPC8xxx_DDR/g
All 85xx, 86xx, and 83xx have been built with this change.
Signed-off-by: Andy Fleming <afleming@freescale.com>
Tested-by: Andy Fleming <afleming@freescale.com>
Acked-by: Kim Phillips <kim.phillips@freescale.com>
|
|
Update CONFIG_RAMBOOT and CONFIG_NAND_SPL references to accept CONFIG_SPL
and CONFIG_SPL_BUILD, respectively. CONFIG_NAND_SPL can be removed once
the last mpc85xx nand_spl target is gone.
CONFIG_RAMBOOT will need to remain for other use cases, but it doesn't
seem right to overload it for meaning SPL as well as nand_spl does. Even
if it's somewhat appropriate for the main u-boot, the SPL itself isn't
(necessarily) ramboot, and we don't have separate configs for SPL and
main u-boot. It was also inconsistent, as other platforms such as
mpc83xx didn't use CONFIG_RAMBOOT in this way.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Andy Fleming <afleming@freescale.com>
|
|
cpu_init_nand.c is renamed to spl_minimal.c as it is not really NAND-specific.
Signed-off-by: Scott Wood <scottwood@freescale.com>
---
v2: factor out START, and change cpu_init_nand.c to spl_minimal.c
Cc: Andy Fleming <afleming@freescale.com>
|
|
It's arch code and not a driver, so move it where it belongs. When it
originally went into drivers/misc there was no 8xxx CPU directory.
This will make new-SPL support a little easier since we can keep the CPU
stuff together and not need to pull stuff in from drivers/misc.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Andy Fleming <afleming@freescale.com>
|
|
ctrl_regs.c:31:5: warning: symbol 'fsl_ddr_get_version' was not declared. Should it be static?
cpu.c:135:14: warning: non-ANSI function declaration of function 'cpu_mask'
cpu.c:154:18: warning: non-ANSI function declaration of function 'cpu_numcores'
cpu.c:37:17: warning: symbol 'cpu_type_list' was not declared. Should it be static?
cpu.c:117:17: warning: symbol 'cpu_type_unknown' was not declared. Should it be static?
fsl_lbc.c:14:6: warning: symbol '__lbc_sdram_init' was not declared. Should it be static?
and:
lc_common_dimm_params.c:15:1: warning: symbol 'compute_cas_latency_ddr3' was not declared. Should it be static?
making it static produces the following compiler warning:
lc_common_dimm_params.c:15:1: warning: 'compute_cas_latency_ddr3' defined but not used [-Wunused-function]
so we protect it with the preprocessor.
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
|
|
Currently, the SRIO and PCIE boot master module will be compiled into the
u-boot image if the macro "CONFIG_FSL_CORENET" has been defined. And this
macro has been included by all the corenet architecture platform boards.
But in fact, it's uncertain whether all corenet platform boards support
this feature.
So it may be better to get rid of the macro "CONFIG_FSL_CORENET", and add
a special macro for every board which can support the feature. This
special macro will be defined in the header file
"arch/powerpc/include/asm/config_mpc85xx.h". It will decide if the SRIO
and PCIE boot master module should be compiled into the board u-boot image.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Since empty DIMM slot is allowed on other than the first slot, remove the
error message if SPD is not found in this case.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Based on populated DIMMs, automatically select from cs0_cs1_cs2_cs3 or
cs0_cs1 interleaving, or non-interleaving if not available.
Fix the message of interleaving disabled if controller interleaving
is enabled but DIMMs don't support it.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Boot space translation utilizes the pre-translation address to select
the DDR controller target. However, the post-translation address will be
presented to the selected DDR controller. It is possible that the pre-
translation address selects one DDR controller but the post-translation
address exists in a different DDR controller when using certain DDR
controller interleaving modes. The device may fail to boot under these
circumstances. Note that a DDR MSE error will not be detected since DDR
controller bounds registers are programmed to be the same when configured
for DDR controller interleaving.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
When ECC is enabled, DDR controller needs to initialize the data and ecc.
The wait time can be calcuated with total memory size, bus width, bus speed
and interleaving mode. If it went wrong, it is bettert to timeout than
waiting for D_INIT to clear, where it probably hangs.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Fix handling quad-rank DIMMs in a system with two DIMM slots and first
slot supports both dual-rank DIMM and quad-rank DIMM.
For systems with quad-rank DIMM and double dual-rank DIMMs, cs_config
registers need to be enabled to maintain proper ODT operation. The
inactive CS should have bnds registers cleared.
Fix the turnaround timing for systems with all chip-selects enabled. This
wasn't an issue before because DDR was running lower than 1600MT/s with
this interleaving mode.
Fix DDR address calculation. It wasn't an issue until we have multiple
controllers with each more than 4GB and interleaving is disabled.
It also fixes the message of DDR: 2 GiB (DDR3, 64-bit, CL=0.5, ECC off)
when debugging DDR and first DDR controller is disabled. With the fix,
the first enabled controller information will be displayed.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
DDRC ver 4.7 adds DDR_SLOW bit in sdram_cfg_2 register. This bit needs to be
set for speed lower than 1250MT/s.
CDR1 and CDR2 are control driver registers. ODT termination valueis for
IOs are defined. Starting from DDRC 4.7, the decoding of ODT for IOs is
000 -> Termsel off
001 -> 120 Ohm
010 -> 180 Ohm
011 -> 75 Ohm
100 -> 110 Ohm
101 -> 60 Ohm
110 -> 70 Ohm
111 -> 47 Ohm
Add two write leveling registers. Each QDS now has its own write leveling
start value. In case of zero value, the value of QDS0 will be used. These
values are board-specific and are set in board files.
Extend DDR register timing_cfg_1 to have 4 bits for each field.
DDR control driver registers and write leveling registers are added to
interactive debugging for easy access.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Add support for Freescale B4860 and variant SoCs. Features of B4860 are
(incomplete list):
Six fully-programmable StarCore SC3900 FVP subsystems, divided into three
clusters-each core runs up to 1.2 GHz, with an architecture highly
optimized for wireless base station applications
Four dual-thread e6500 Power Architecture processors organized in one
cluster-each core runs up to 1.8 GHz
Two DDR3/3L controllers for high-speed, industry-standard memory interface
each runs at up to 1866.67 MHz
MAPLE-B3 hardware acceleration-for forward error correction schemes
including Turbo or Viterbi decoding, Turbo encoding and rate matching,
MIMO MMSE equalization scheme, matrix operations, CRC insertion and
check, DFT/iDFT and FFT/iFFT calculations, PUSCH/PDSCH acceleration,
and UMTS chip rate acceleration
CoreNet fabric that fully supports coherency using MESI protocol between
the e6500 cores, SC3900 FVP cores, memories and external interfaces.
CoreNet fabric interconnect runs at 667 MHz and supports coherent and
non-coherent out of order transactions with prioritization and
bandwidth allocation amongst CoreNet endpoints.
Data Path Acceleration Architecture, which includes the following:
Frame Manager (FMan), which supports in-line packet parsing and general
classification to enable policing and QoS-based packet distribution
Queue Manager (QMan) and Buffer Manager (BMan), which allow offloading
of queue management, task management, load distribution, flow ordering,
buffer management, and allocation tasks from the cores
Security engine (SEC 5.3)-crypto-acceleration for protocols such as
IPsec, SSL, and 802.16
RapidIO manager (RMAN) - Support SRIO types 8, 9, 10, and 11 (inbound and
outbound). Supports types 5, 6 (outbound only)
Large internal cache memory with snooping and stashing capabilities for
bandwidth saving and high utilization of processor elements. The
9856-Kbyte internal memory space includes the following:
32 Kbyte L1 ICache per e6500/SC3900 core
32 Kbyte L1 DCache per e6500/SC3900 core
2048 Kbyte unified L2 cache for each SC3900 FVP cluster
2048 Kbyte unified L2 cache for the e6500 cluster
Two 512 Kbyte shared L3 CoreNet platform caches (CPC)
Sixteen 10-GHz SerDes lanes serving:
Two Serial RapidIO interfaces. Each supports up to 4 lanes and a total
of up to 8 lanes
Up to 8-lanes Common Public Radio Interface (CPRI) controller for glue-
less antenna connection
Two 10-Gbit Ethernet controllers (10GEC)
Six 1G/2.5-Gbit Ethernet controllers for network communications
PCI Express controller
Debug (Aurora)
Two OCeaN DMAs
Various system peripherals
182 32-bit timers
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Add support for Freescale T4240 SoC. Feature of T4240 are
(incomplete list):
12 dual-threaded e6500 cores built on Power Architecture® technology
Arranged as clusters of four cores sharing a 2 MB L2 cache.
Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture
v2.06-compliant)
Three levels of instruction: user, supervisor, and hypervisor
1.5 MB CoreNet Platform Cache (CPC)
Hierarchical interconnect fabric
CoreNet fabric supporting coherent and non-coherent transactions with
prioritization and bandwidth allocation amongst CoreNet end-points
1.6 Tbps coherent read bandwidth
Queue Manager (QMan) fabric supporting packet-level queue management and
quality of service scheduling
Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
support
Memory prefetch engine (PMan)
Data Path Acceleration Architecture (DPAA) incorporating acceleration for
the following functions:
Packet parsing, classification, and distribution (Frame Manager 1.1)
Queue management for scheduling, packet sequencing, and congestion
management (Queue Manager 1.1)
Hardware buffer management for buffer allocation and de-allocation
(BMan 1.1)
Cryptography acceleration (SEC 5.0) at up to 40 Gbps
RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps
Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps
DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0)
32 SerDes lanes at up to 10.3125 GHz
Ethernet interfaces
Up to four 10 Gbps Ethernet MACs
Up to sixteen 1 Gbps Ethernet MACs
Maximum configuration of 4 x 10 GE + 8 x 1 GE
High-speed peripheral interfaces
Four PCI Express 2.0/3.0 controllers
Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with
Type 11 messaging and Type 9 data streaming support
Interlaken look-aside interface for serial TCAM connection
Additional peripheral interfaces
Two serial ATA (SATA 2.0) controllers
Two high-speed USB 2.0 controllers with integrated PHY
Enhanced secure digital host controller (SD/MMC/eMMC)
Enhanced serial peripheral interface (eSPI)
Four I2C controllers
Four 2-pin or two 4-pin UARTs
Integrated Flash controller supporting NAND and NOR flash
Two eight-channel DMA engines
Support for hardware virtualization and partitioning enforcement
QorIQ Platform's Trust Architecture 1.1
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Add support for the Freescale P5040 SOC, which is similar to the P5020.
Features of the P5040 are:
Four P5040 single-threaded e5500 cores built
Up to 2.4 GHz with 64-bit ISA support
Three levels of instruction: user, supervisor, hypervisor
CoreNet platform cache (CPC)
2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric
Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
support Up to 1600MT/s
Memory pre-fetch engine
DPAA incorporating acceleration for the following functions
Packet parsing, classification, and distribution (FMAN)
Queue management for scheduling, packet sequencing and
congestion management (QMAN)
Hardware buffer management for buffer allocation and
de-allocation (BMAN)
Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes
20 lanes at up to 5 Gbps
Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces
Two 10 Gbps Ethernet MACs
Ten 1 Gbps Ethernet MACs
High-speed peripheral interfaces
Two PCI Express 2.0/3.0 controllers
Additional peripheral interfaces
Two serial ATA (SATA 2.0) controllers
Two high-speed USB 2.0 controllers with integrated PHY
Enhanced secure digital host controller (SD/MMC/eMMC)
Enhanced serial peripheral interface (eSPI)
Two I2C controllers
Four UARTs
Integrated flash controller supporting NAND and NOR flash
DMA
Dual four channel
Support for hardware virtualization and partitioning enforcement
Extra privileged level for hypervisor support
QorIQ Trust Architecture 1.1
Secure boot, secure debug, tamper detection, volatile key storage
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Erratum: A-004034
Affects: SRIO
Description: During port initialization, the SRIO port performs
lane synchronization (detecting valid symbols on a lane) and
lane alignment (coordinating multiple lanes to receive valid data
across lanes). Internal errors in lane synchronization and lane
alignment may cause failure to achieve link initialization at
the configured port width.
An SRIO port configured as a 4x port may see one of these scenarios:
1. One or more lanes fails to achieve lane synchronization.
Depending on which lanes fail, this may result in downtraining
from 4x to 1x on lane 0, 4x to 1x on lane R (redundant lane).
2. The link may fail to achieve lane alignment as a 4x, even
though all 4 lanes achieve lane synchronization, and downtrain
to a 1x. An SRIO port configured as a 1x port may fail to complete
port initialization (PnESCSR[PU] never deasserts) because of
scenario 1.
Impact: SRIO port may downtrain to 1x, or may fail to complete
link initialization. Once a port completes link initialization
successfully, it will operate normally.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Fix usb device-tree fixup:
- wrong modification of dr_mode and phy_type when
"usb1" is not mentioned inside hwconfig string;
now allows hwconfig strings like:
"usb2:dr_mode=host,phy_type=ulpi"
- add warning message for using usb_dr_mode
and usb_phy_type env variables (if either is used)
Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Before proper environment is setup, we extract hwconfig and put it into a
buffer with size HWCONFIG_BUFFER_SIZE. We need to enlarge the buffer to
accommodate longer string. Since this macro is used in multiple files, we
move it into arch/powerpc/include/asm/config.h.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Add one more argument to call function readline_into_buffer().
Fix print SPD format for negative values.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Only the first DIMM of first controller should fall back to raw timing
parameters if SPD is missing or corrupted.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Empty slot should be skipped when calculating CAS latency.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|
|
Faster DDR3 timing requires parameters exceeding previously defined
range. Extended parameters are fixed. Added some debug messages.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
|