Age | Commit message (Collapse) | Author |
|
Add a new uclass for button that implements two functions:
- button_get_by_label
- button_get_status
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Philippe Reynes <philippe.reynes@softathome.com>
|
|
Since commit 1517126fdac2 ("ARM: uniphier: select DM_ETH"), DM-based
drivers/net/smc911x.c is compiled, but it is never probed because the
parent node lacks the DM-based driver.
I need a skeleton driver to populate child devices (but the next commit
will move more hardware settings to the this driver).
I put this to drivers/bus/uniphier-system-bus.c because this is the
same path as the driver in Linux kernel.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
Add a uclass for reading a random number seed from a random number
generator device.
Signed-off-by: Sughosh Ganu <sughosh.ganu@linaro.org>
Reviewed-by: Patrice Chotard <patrice.chotard@st.com>
Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
Add Support for UFS Host Controller Interface (UFSHCI) for communicating
with Universal Flash Storage (UFS) devices. The steps to initialize the
host controller interface are the following:
- Initiate the Host Controller Initialization process by writing to the
Host controller enable register.
- Configure the Host Controller base address registers by allocating a
host memory space and related data structures.
- Unipro link startup procedure
- Check for connected device
- Configure UFS host controller to process requests
Also register this host controller as a SCSI host controller.
Taken from Linux Kernel v5.2 (drivers/scsi/ufs/ufshcd.c) and ported to
U-boot.
Signed-off-by: Faiz Abbas <faiz_abbas@ti.com>
|
|
This is no-longer used in U-Boot and has not been converted to driver
model. Drop it.
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
Introduce new UCLASS_PCI_EP class for handling PCI endpoint
devices, allowing to set various attributes of the PCI endpoint
device, such as:
* configuration space header
* BAR definitions
* outband memory mapping
* start/stop PCI link
Signed-off-by: Ramon Fried <ramon.fried@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
The cache UCLASS will be used for configure settings that can be found
in a CPU's L2 cache controller.
Add a uclass and a test for cache.
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Dinh Nguyen <dinguyen@kernel.org>
|
|
The Ring Accelerator (RINGACC or RA) provides hardware acceleration to
enable straightforward passing of work between a producer and a consumer.
There is one RINGACC module per NAVSS on TI AM65x SoCs.
The RINGACC converts constant-address read and write accesses to equivalent
read or write accesses to a circular data structure in memory. The RINGACC
eliminates the need for each DMA controller which needs to access ring
elements from having to know the current state of the ring (base address,
current offset). The DMA controller performs a read or write access to a
specific address range (which maps to the source interface on the RINGACC)
and the RINGACC replaces the address for the transaction with a new address
which corresponds to the head or tail element of the ring (head for reads,
tail for writes). Since the RINGACC maintains the state, multiple DMA
controllers or channels are allowed to coherently share the same rings as
applicable. The RINGACC is able to place data which is destined towards
software into cached memory directly.
Supported ring modes:
- Ring Mode
- Messaging Mode
- Credentials Mode
- Queue Manager Mode
TI-SCI integration:
Texas Instrument's System Control Interface (TI-SCI) Message Protocol now
has control over Ringacc module resources management (RM) and Rings
configuration.
The Ringacc driver manages Rings allocation by itself now and requests
TI-SCI firmware to allocate and configure specific Rings only. It's done
this way because, Linux driver implements two stage Rings allocation and
configuration (allocate ring and configure ring) while TI-SCI Message
Protocol supports only one combined operation (allocate+configure).
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vignesh R <vigneshr@ti.com>
|
|
At present this uclass is selected only on x86. In order to add a test for
it, it must also support sandbox. Create a new CONFIG_PCH option and
enable it on x86 and sandbox.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
|
|
This is uclass for Hardware Spinlocks.
It implements two mandatory operations: lock and unlock
and one optional relax operation.
Signed-off-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Reviewed-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Patrice Chotard <patrice.chotard@st.com>
|
|
This adds a new virtio uclass driver for “virtio” [1] family of
devices that are are found in virtual environments like QEMU,
yet by design they look like physical devices to the guest.
The uclass driver provides child_pre_probe() and child_post_probe()
methods to do some common operations for virtio device drivers like
device and driver supported feature negotiation, etc.
[1] http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.pdf
Signed-off-by: Tuomas Tynkkynen <tuomas.tynkkynen@iki.fi>
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
Adds a uclass to interface with a TEE (Trusted Execution Environment).
A TEE driver is a driver that interfaces with a trusted OS running in
some secure environment, for example, TrustZone on ARM cpus, or a
separate secure co-processor etc.
The TEE subsystem can serve a TEE driver for a Global Platform compliant
TEE, but it's not limited to only Global Platform TEEs.
The over all design is based on the TEE subsystem in the Linux kernel,
tailored for U-Boot.
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Igor Opaniuk <igor.opaniuk@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
|
|
|
|
Since there is no canonical "board device" that can be used in board
files, it is difficult to use DM function for board initialization in
these cases.
Hence, add a uclass that implements a simple "board device", which can
hold devices not suitable anywhere else in the device tree, and is also
able to read encoded information, e.g. hard-wired GPIOs on a GPIO
expander, read-only memory ICs, etc. that carry information about the
hardware.
The devices of this uclass expose methods to read generic data types
(integers, strings, booleans) to encode the information provided by the
hardware.
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Mario Six <mario.six@gdsys.cc>
|
|
Switch to driver model for eSDHC on Layerscape SoCs including LS1021A,
LS1043A, LS1046A, LS1088A, LS2088A.
Switch to driver model for SATA on LS1021A and LS1043A.
Add support for LS1012AFRWY rev C board.
Enable SMMU for LS1043A.
|
|
We might want to access data stored onto one wire EEPROMs.
Create a framework to provide a consistent API.
Signed-off-by: Maxime Ripard <maxime.ripard@bootlin.com>
[eugen.hristev@microchip.com: reworked patch]
Signed-off-by: Eugen Hristev <eugen.hristev@microchip.com>
|
|
We might want to use 1-Wire devices connected on boards such as EEPROMs in
U-Boot.
Provide a framework to be able to do that.
Signed-off-by: Maxime Ripard <maxime.ripard@bootlin.com>
[eugen.hristev@microchip.com: reworked]
Signed-off-by: Eugen Hristev <eugen.hristev@microchip.com>
|
|
Signed-off-by: Ran Wang <ran.wang_1@nxp.com>
[York S: revised subject line and removed commit message]
Reviewed-by: York Sun <york.sun@nxp.com>
|
|
Add a uclass for AXI (Advanced eXtensible Interface) busses, and a
driver for the gdsys IHS AXI bus on IHS FPGAs.
Signed-off-by: Mario Six <mario.six@gdsys.cc>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
The Shared Memory Manager driver implements an interface for allocating
and accessing items in the memory area shared among all of the
processors in a Qualcomm platform.
Adapted from the Linux driver (4.17)
Changes from the original Linux driver:
* Removed HW spinlock mechanism, which is irrelevant
in U-boot particualar use case, which is just reading from the smem.
* Adapted from Linux driver model to U-Boot's.
Cc: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Ramon Fried <ramon.fried@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
|
|
Separate CMD_FASTBOOT from FASTBOOT and move code and configuration to
drivers/fastboot.
Switch dependencies on FASTBOOT to USB_FUNCTION_FASTBOOT as anyone who wants
FASTBOOT before this series wants USB_FUNCTION_FASTBOOT. Split
USB_FUNCTION_FASTBOOT from FASTBOOT so they retain their existing
behaviour.
Signed-off-by: Alex Kiernan <alex.kiernan@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Acked-by: Joe Hershberger <joe.hershberger@ni.com>
|
|
USB PHY implementation for Allwinner SOC's can be handling
in to single driver with different phy configs.
This driver handle all Allwinner USB PHY's start from 4I to
50I(except 9I). Currently added A64 compatibility more will
add in next coming patches.
Current implementation is unable to get pinctrl, clock and reset
details from DT since the dm code on these will add it future.
Driver named as phy-sun4i-usb.c since the same PHY logic
work for all Allwinner SOC's start from 4I to A64 except 9I
with different phy configurations.
Signed-off-by: Jagan Teki <jagan@amarulasolutions.com>
Acked-by: Jun Nie <jun.nie@linaro.org>
|
|
Add support for bootcounter on an EXT filesystem.
Sync configuration whitelist.
Signed-off-by: Ian Ray <ian.ray@ge.com>
Signed-off-by: Martyn Welch <martyn.welch@collabora.co.uk>
|
|
NVM Express (NVMe) is a register level interface that allows host
software to communicate with a non-volatile memory subsystem. This
interface is optimized for enterprise and client solid state drives,
typically attached to the PCI express interface.
This adds a U-Boot driver support of devices that follow the NVMe
standard [1] and supports basic read/write operations.
Tested with a 400GB Intel SSD 750 series NVMe card with controller
id 8086:0953.
[1] http://www.nvmexpress.org/resources/specifications/
Signed-off-by: Zhikang Zhang <zhikang.zhang@nxp.com>
Signed-off-by: Wenbin Song <wenbin.song@nxp.com>
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
|
|
At present we have the SCSI drivers in the drivers/block and common/
directories. It is better to split them out into their own place. Use
drivers/scsi which is what Linux does.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
|
|
At present we have the SATA and PATA drivers mixed up in the drivers/block
directory. It is better to split them out into their own place. Use
drivers/ata which is what Linux does.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
|
|
This subsystem is quite old. It has been replaced with a driver-model
version (UCLASS_THERMAL). Boards are free to convert to that if required,
but here is a removal patch that could be applied in the meantime.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Heiko Schocher <hs@denx.de>
Reviewed-by: Tom Rini <trini@konsulko.com>
|
|
The PHY framework provides a set of APIs to control a PHY. This API is
derived from the linux version of the generic PHY framework.
Currently the API supports init(), deinit(), power_on, power_off() and
reset(). The framework provides a way to get a reference to a phy from the
device-tree.
Signed-off-by: Jean-Jacques Hiblot <jjhiblot@ti.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
If the system is running PSCI firmware, the System Reset function
(func ID: 0x80000009) is supposed to be handled by PSCI, that is,
the SoC/board specific reset implementation should be moved to PSCI.
U-Boot should call the PSCI service according to the arm-smccc
manner.
The arm-smccc is supported on ARMv7 or later. Especially, ARMv8
generation SoCs are likely to run ARM Trusted Firmware BL31. In
this case, U-Boot is a non-secure world boot loader, so it should
not be able to reset the system directly.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
Convert Altera DDR SDRAM driver to use Kconfig method.
Enable ALTERA_SDRAM by default if it is on Gen5 target.
Arria 10 will have different driver.
Signed-off-by: Tien Fong Chee <tien.fong.chee@intel.com>
Signed-off-by: Ley Foon Tan <ley.foon.tan@intel.com>
|
|
Create driver/ddr/fsl/Kconfig and move existing options. Clean up
existing macros.
Signed-off-by: York Sun <york.sun@nxp.com>
[trini: Migrate sbc8641d, xpedite537x and MPC8536DS, run a moveconfig.py -s]
Signed-off-by: Tom Rini <trini@konsulko.com>
|
|
This version is based on the Marvell U-Boot version with this patch
applied as latest patch:
Git ID 7f408573: "fix: comphy: cp110: add comphy initialization for usb
device mode" from 2016-07-05.
Signed-off-by: Stefan Roese <sr@denx.de>
Cc: Nadav Haklai <nadavh@marvell.com>
Cc: Kostya Porotchkin <kostap@marvell.com>
Cc: Wilson Ding <dingwei@marvell.com>
Cc: Victor Gu <xigu@marvell.com>
Cc: Hua Jing <jinghua@marvell.com>
Cc: Terry Zhou <bjzhou@marvell.com>
Cc: Hanna Hawa <hannah@marvell.com>
Cc: Haim Boot <hayim@marvell.com>
|
|
Add missing Kconfig to fpga subsystem to be able
to add new options.
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
|
|
Create drivers/sysreset and move sysreset-uclass and all sysreset
drivers there.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
|
|
A reset controller is a hardware module that controls reset signals that
affect other hardware modules or chips.
This patch defines a standard API that connects reset clients (i.e. the
drivers for devices affected by reset signals) to drivers for reset
controllers/providers. Initially, DT is the only supported method for
connecting the two.
The DT binding specification (reset.txt) was taken from Linux kernel
v4.5's Documentation/devicetree/bindings/reset/reset.txt.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Acked-by: Simon Glass <sjg@chromium.org>
|
|
A mailbox is a hardware mechanism for transferring small message and/or
notifications between the CPU on which U-Boot runs and some other device
such as an auxilliary CPU running firmware or a hardware module.
This patch defines a standard API that connects mailbox clients to mailbox
providers (drivers). Initially, DT is the only supported method for
connecting the two.
The DT binding specification (mailbox.txt) was taken from Linux kernel
v4.5's Documentation/devicetree/bindings/mailbox/mailbox.txt.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Acked-by: Simon Glass <sjg@chromium.org>
|
|
Not all Keystone2 devices has AEMIF NAND controller. So adding Kconfig
entry for CONFIG_TI_AEMIF and enabling it in respective defconfigs on
platforms with AEMIF controller.
Reported-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
|
|
Qualcom processors use proprietary bus to talk with PMIC devices -
SPMI (System Power Management Interface).
On wiring level it is similar to I2C, but on protocol level, it's
multi-master and has simple autodetection capabilities.
This commit adds simple uclass that provides bus read/write interface.
Signed-off-by: Mateusz Kulikowski <mateusz.kulikowski@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
|
|
Add a uclass that supports Pulse Width Modulation (PWM) devices. It
provides methods to enable/disable and configure the device.
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
This commit adds:
- new uclass id: UCLASS_ADC
- new uclass driver: drivers/adc/adc-uclass.c
The new uclass's API allows for ADC operation on:
* single-channel with channel selection by a number
* multti-channel with channel selection by bit mask
ADC uclass's functions:
* single-channel:
- adc_start_channel() - start channel conversion
- adc_channel_data() - get conversion data
- adc_channel_single_shot() - start/get conversion data
* multi-channel:
- adc_start_channels() - start selected channels conversion
- adc_channels_data() - get conversion data
- adc_channels_single_shot() - start/get conversion data for channels
selected by bit mask
* general:
- adc_stop() - stop the conversion
- adc_vdd_value() - positive reference Voltage value with polarity [uV]
- adc_vss_value() - negative reference Voltage value with polarity [uV]
- adc_data_mask() - conversion data bit mask
The device tree can provide below constraints/properties:
- vdd-polarity-negative: if true: Vdd = vdd-microvolts * (-1)
- vss-polarity-negative: if true: Vss = vss-microvolts * (-1)
- vdd-supply: phandle to Vdd regulator's node
- vss-supply: phandle to Vss regulator's node
And optional, checked only if the above corresponding, doesn't exist:
- vdd-microvolts: positive reference Voltage [uV]
- vss-microvolts: negative reference Voltage [uV]
Signed-off-by: Przemyslaw Marczak <p.marczak@samsung.com>
Cc: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
|
|
Implement a Timer uclass to work with lib/time.c.
Signed-off-by: Thomas Chou <thomas@wytron.com.tw>
Acked-by: Simon Glass <sjg@chromium.org>
|
|
Many System on Chip(SoC) solutions are complex with multiple processors
on the same die dedicated to either general purpose of specialized
functions. Many examples do exist in today's SoCs from various vendors.
Typical examples are micro controllers such as an ARM M3/M0 doing a
offload of specific function such as event integration or power
management or controlling camera etc.
Traditionally, the responsibility of loading up such a processor with a
firmware and communication has been with a High Level Operating
System(HLOS) such as Linux. However, there exists classes of products
where Linux would need to expect services from such a processor or the
delay of Linux and operating system being able to load up such a
firmware is unacceptable.
To address these needs, we need some minimal capability to load such a
system and ensure it is started prior to an Operating System(Linux or
any other) is started up.
NOTE: This is NOT meant to be a solve-all solution, instead, it tries to
address certain class of SoCs and products that need such a solution.
A very simple model is introduced here as part of the initial support
that supports microcontrollers with internal memory (no MMU, no
execution from external memory, or specific image format needs). This
basic framework can then (hopefully) be extensible to other complex SoC
processor support as need be.
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Nishanth Menon <nm@ti.com>
Acked-by: Simon Glass <sjg@chromium.org>
|
|
This creates a new framework for handling of pin control devices,
i.e. devices that control different aspects of package pins.
This uclass handles pinmuxing and pin configuration; pinmuxing
controls switching among silicon blocks that share certain physical
pins, pin configuration handles electronic properties such as pin-
biasing, load capacitance etc.
This framework can support the same device tree bindings, but if you
do not need full interface support, you can disable some features to
reduce memory foot print. Typically around 1.5KB is necessary to
include full-featured uclass support on ARM board (CONFIG_PINCTRL +
CONFIG_PINCTRL_FULL + CONFIG_PINCTRL_GENERIC + CONFIG_PINCTRL_PINMUX),
for example.
We are often limited on code size for SPL. Besides, we still have
many boards that do not support device tree configuration. The full
pinctrl, which requires OF_CONTROL, does not make sense for those
boards. So, this framework also has a Do-It-Yourself (let's say
simple pinctrl) interface. With CONFIG_PINCTRL_FULL disabled, the
uclass itself provides no systematic mechanism for identifying the
peripheral device, applying pinctrl settings, etc. They must be
done in each low-level driver. In return, you can save much memory
footprint and it might be useful especially for SPL.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Simon Glass <sjg@chromium.org>
|
|
Sort different types of drivers in alphabetical order.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
|
|
Right now PHYS_TO_BUS shows in the Kconfig main menu, move it.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
|
|
Make "Generic Driver Options" menu show on the top in the Kconfig.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
|
|
Clocks are an important feature of platforms and have become increasing
complex with time. Most modern SoCs have multiple PLLs and dozens of clock
dividers which distribute clocks to on-chip peripherals.
Some SoC implementations have a clock API which is private to that SoC family,
e.g. Tegra and Exynos. This is useful but it would be better to have a
common API that can be understood and used throughout U-Boot.
Add a simple clock API as a starting point. It supports querying and setting
the rate of a clock. Each clock is a device. To reduce memory and processing
overhead the concept of peripheral clocks is provided. These do not need to
be explicit devices - it is possible to write a driver that can adjust the
I2C clock (for example) without an explicit I2C clock device. This can
dramatically reduce the number of devices (and associated overhead) in a
complex SoC.
Clocks are referenced by a number, and it is expected that SoCs will define
that numbering themselves via an enum.
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
Add support for a driver which sets up DRAM and can return information about
the amount of RAM available. This is a first step towards moving RAM init
to driver model.
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
Add a simple uclass for LEDs, so that these can be controlled by the device
tree and activated when needed. LEDs are referred to by their label.
This implementation requires a driver for each type of LED (e.g GPIO, I2C).
Signed-off-by: Simon Glass <sjg@chromium.org>
|