Age | Commit message (Collapse) | Author |
|
Signed-off-by: Wolfgang Denk <wd@denx.de>
|
|
This change does the following:
- Adds printing of negotiated link width. This information can be
useful when debugging PCIe issues.
- Makes it optional for boards to implement board_serdes_name().
Previously boards that did not implement it would print unsightly
output such as "PCIE1: Connected to <NULL>..."
- Rewords the PCIe boot output to reduce line length and to make it
clear that the "base address XYZ" value refers to the base address of
the internal processor PCIe registers and not a standard PCI BAR
value.
- Changes "PCIE" output to the standard "PCIe"
Before change:
PCIE1: connected to <NULL> as Root Complex (base addr ef008000)
01:00.0 - 10b5:8518 - Bridge device
02:01.0 - 10b5:8518 - Bridge device
02:02.0 - 10b5:8518 - Bridge device
02:03.0 - 10b5:8518 - Bridge device
PCIE1: Bus 00 - 05
PCIE2: connected to <NULL> as Endpoint (base addr ef009000)
PCIE2: Bus 06 - 06
After change:
PCIe1: Root Complex of PEX8518 Switch, x4, regs @ 0xef008000
01:00.0 - 10b5:8518 - Bridge device
02:01.0 - 10b5:8518 - Bridge device
02:02.0 - 10b5:8518 - Bridge device
02:03.0 - 10b5:8518 - Bridge device
PCIe1: Bus 00 - 05
PCIe2: Endpoint of VPX Fabric A, x2, regs @ 0xef009000
PCIe2: Bus 06 - 06
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Since all the PCIe controllers are connected over SERDES on the SoCs we
can utilize is_serdes_configured() to determine if a controller is
enabled. After which we can setup the ATMUs and LAWs for the controller
in a common fashion and allow board code to specify what the controller
is connected to for reporting reasons.
We also provide a per controller (rather than all) for some systems that
may have special requirements.
Finally, we refactor the code used by the P1022DS to utilize the new
generic code.
Based on patch by: Li Yang <leoli@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Previously we passed in a specifically named struct pci_controller to
determine if we had setup the particular PCI bus. Now we can search for
the struct so we dont have to depend on the name or the struct being
statically allocated.
Introduced new find_hose_by_cfg_addr() to get back a pci_controller struct
back by searching for it means we can do things like dynamically allocate
them or not have to expose the static structures to all users.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Acked-by: Wolfgang Denk <wd@denx.de>
|
|
Signed-off-by: Wolfgang Denk <wd@denx.de>
Acked-by: Stefan Roese <sr@denx.de>
|
|
Before this commit, weak symbols were not overridden by non-weak symbols
found in archive libraries when linking with recent versions of
binutils. As stated in the System V ABI, "the link editor does not
extract archive members to resolve undefined weak symbols".
This commit changes all Makefiles to use partial linking (ld -r) instead
of creating library archives, which forces all symbols to participate in
linking, allowing non-weak symbols to override weak symbols as intended.
This approach is also used by Linux, from which the gmake function
cmd_link_o_target (defined in config.mk and used in all Makefiles) is
inspired.
The name of each former library archive is preserved except for
extensions which change from ".a" to ".o". This commit updates
references accordingly where needed, in particular in some linker
scripts.
This commit reveals board configurations that exclude some features but
include source files that depend these disabled features in the build,
resulting in undefined symbols. Known such cases include:
- disabling CMD_NET but not CMD_NFS;
- enabling CONFIG_OF_LIBFDT but not CONFIG_QE.
Signed-off-by: Sebastien Carlier <sebastien.carlier@gmail.com>
|
|
When CONFIG_PCI_SCAN_SHOW is defined U-Boot prints out PCI devices as
they are found during bootup, eg:
PCIE1: connected as Root Complex
01:00.0 - 10b5:8518 - Bridge device
02:01.0 - 10b5:8518 - Bridge device
03:00.0 - 10b5:8112 - Bridge device
04:01.0 - 8086:1010 - Network controller
04:01.1 - 8086:1010 - Network controller
02:02.0 - 10b5:8518 - Bridge device
02:03.0 - 10b5:8518 - Bridge device
06:00.0 - 10b5:8518 - Bridge device
07:00.0 - 10b5:8518 - Bridge device
08:00.0 - 1957:0040 - Processor
07:01.0 - 10b5:8518 - Bridge device
09:00.0 - 10b5:8112 - Bridge device
07:02.0 - 10b5:8518 - Bridge device
PCIE1: Bus 00 - 0b
PCIE2: connected as Root Complex
0d:00.0 - 1957:0040 - Processor
PCIE2: Bus 0c - 0d
This information is useful, but its difficult to determine the PCI bus
topology. To things clearer, we can use indention to make it more
obvious how the PCI bus is organized. For the example above, the
updated output with this change is:
PCIE1: connected as Root Complex
01:00.0 - 10b5:8518 - Bridge device
02:01.0 - 10b5:8518 - Bridge device
03:00.0 - 10b5:8112 - Bridge device
04:01.0 - 8086:1010 - Network controller
04:01.1 - 8086:1010 - Network controller
02:02.0 - 10b5:8518 - Bridge device
02:03.0 - 10b5:8518 - Bridge device
06:00.0 - 10b5:8518 - Bridge device
07:00.0 - 10b5:8518 - Bridge device
08:00.0 - 1957:0040 - Processor
07:01.0 - 10b5:8518 - Bridge device
09:00.0 - 10b5:8112 - Bridge device
07:02.0 - 10b5:8518 - Bridge device
PCIE1: Bus 00 - 0b
PCIE2: connected as Root Complex
0d:00.0 - 1957:0040 - Processor
PCIE2: Bus 0c - 0d
In the examples above, an MPC8640 is connected to a PEX8518 PCIe switch
(01:00 and 02:0x), which is connected to another PEX8518 PCIe switch
(06:00 and 07:0x), which then connects to a MPC8572 processor (08:00).
Also, the MPC8640's PEX8518 PCIe switch is connected to a PCI ethernet
card (04:01) via a PEX8112 PCIe-to-PCI bridge (03:00).
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
|
|
Move the printing of PCI device information to before the PCI device is
configured. This prevents the case where recursive scanning results in
the deepest devices being printed first.
This change also makes PCI lockups during enumeration easier to
diagnose since the device that is being configured is printed out prior
to configuration. Previously, it was not possible to determine which
device caused the PCI lockup.
Original example:
PCIE1: connected as Root Complex
04:01.0 - 8086:1010 - Network controller
04:01.1 - 8086:1010 - Network controller
03:00.0 - 10b5:8112 - Bridge device
02:01.0 - 10b5:8518 - Bridge device
02:02.0 - 10b5:8518 - Bridge device
08:00.0 - 1957:0040 - Processor
07:00.0 - 10b5:8518 - Bridge device
09:00.0 - 10b5:8112 - Bridge device
07:01.0 - 10b5:8518 - Bridge device
07:02.0 - 10b5:8518 - Bridge device
06:00.0 - 10b5:8518 - Bridge device
02:03.0 - 10b5:8518 - Bridge device
01:00.0 - 10b5:8518 - Bridge device
PCIE1: Bus 00 - 0b
Updated example:
PCIE1: connected as Root Complex
01:00.0 - 10b5:8518 - Bridge device
02:01.0 - 10b5:8518 - Bridge device
03:00.0 - 10b5:8112 - Bridge device
04:01.0 - 8086:1010 - Network controller
04:01.1 - 8086:1010 - Network controller
02:02.0 - 10b5:8518 - Bridge device
02:03.0 - 10b5:8518 - Bridge device
06:00.0 - 10b5:8518 - Bridge device
07:00.0 - 10b5:8518 - Bridge device
08:00.0 - 1957:0040 - Processor
07:01.0 - 10b5:8518 - Bridge device
09:00.0 - 10b5:8112 - Bridge device
07:02.0 - 10b5:8518 - Bridge device
PCIE1: Bus 00 - 0b
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
|
|
This change does the following:
- Removes the printing of the PCI interrupt line value. This is
normally set to 0 by U-Boot on bootup and is rarely used during
everyday operation.
- Prints out the PCI function number of a device. Previously a device
with multiple functions would be printed identically 2 times, which is
generally confusing. For example, on an Intel 2 port gigabit Ethernet
card the following was displayed:
...
04 01 8086 1010 0200 00
04 01 8086 1010 0200 00
...
- Prints a text description of each device's PCI class instead of the
raw PCI class code. The textual description makes it much easier to
determine what devices are installed on a PCI bus.
- Changes the general formatting of the PCI device output.
Previous output:
PCIE1: connected as Root Complex
04 01 8086 1010 0200 00
04 01 8086 1010 0200 00
03 00 10b5 8112 0604 00
02 01 10b5 8518 0604 00
02 02 10b5 8518 0604 00
08 00 1957 0040 0b20 00
07 00 10b5 8518 0604 00
09 00 10b5 8112 0604 00
07 01 10b5 8518 0604 00
07 02 10b5 8518 0604 00
06 00 10b5 8518 0604 00
02 03 10b5 8518 0604 00
01 00 10b5 8518 0604 00
PCIE1: Bus 00 - 0b
PCIE2: connected as Root Complex
0d 00 1957 0040 0b20 00
PCIE2: Bus 0c - 0d
Updated output:
PCIE1: connected as Root Complex
04:01.0 - 8086:1010 - Network controller
04:01.1 - 8086:1010 - Network controller
03:00.0 - 10b5:8112 - Bridge device
02:01.0 - 10b5:8518 - Bridge device
02:02.0 - 10b5:8518 - Bridge device
08:00.0 - 1957:0040 - Processor
07:00.0 - 10b5:8518 - Bridge device
09:00.0 - 10b5:8112 - Bridge device
07:01.0 - 10b5:8518 - Bridge device
07:02.0 - 10b5:8518 - Bridge device
06:00.0 - 10b5:8518 - Bridge device
02:03.0 - 10b5:8518 - Bridge device
01:00.0 - 10b5:8518 - Bridge device
PCIE1: Bus 00 - 0b
PCIE2: connected as Root Complex
0d:00.0 - 1957:0040 - Processor
PCIE2: Bus 0c - 0d
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
|
|
The "Scanning PCI bus X" message doesn't provide any real useful
information, so remove it.
Original output:
PCIE1: connected as Root Complex
Scanning PCI bus 01
04 01 8086 1010 0200 00
04 01 8086 1010 0200 00
03 00 10b5 8112 0604 00
02 01 10b5 8518 0604 00
02 02 10b5 8518 0604 00
08 00 1957 0040 0b20 00
07 00 10b5 8518 0604 00
09 00 10b5 8112 0604 00
07 01 10b5 8518 0604 00
07 02 10b5 8518 0604 00
06 00 10b5 8518 0604 00
02 03 10b5 8518 0604 00
01 00 10b5 8518 0604 00
PCIE1: Bus 00 - 0b
PCIE2: connected as Root Complex
Scanning PCI bus 0d
0d 00 1957 0040 0b20 00
PCIE2: Bus 0c - 0d
Updated output:
PCIE1: connected as Root Complex
04 01 8086 1010 0200 00
04 01 8086 1010 0200 00
03 00 10b5 8112 0604 00
02 01 10b5 8518 0604 00
02 02 10b5 8518 0604 00
08 00 1957 0040 0b20 00
07 00 10b5 8518 0604 00
09 00 10b5 8112 0604 00
07 01 10b5 8518 0604 00
07 02 10b5 8518 0604 00
06 00 10b5 8518 0604 00
02 03 10b5 8518 0604 00
01 00 10b5 8518 0604 00
PCIE1: Bus 00 - 0b
PCIE2: connected as Root Complex
0d 00 1957 0040 0b20 00
PCIE2: Bus 0c - 0d
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
CC: galak@kernel.crashing.org
|
|
Previously boards used a variety of indentations, newline styles, and
colon styles for the PCI information that is printed on bootup. This
patch unifies the style to look like:
...
NAND: 1024 MiB
PCIE1: connected as Root Complex
Scanning PCI bus 01
04 01 8086 1010 0200 00
04 01 8086 1010 0200 00
03 00 10b5 8112 0604 00
02 01 10b5 8518 0604 00
02 02 10b5 8518 0604 00
08 00 1957 0040 0b20 00
07 00 10b5 8518 0604 00
09 00 10b5 8112 0604 00
07 01 10b5 8518 0604 00
07 02 10b5 8518 0604 00
06 00 10b5 8518 0604 00
02 03 10b5 8518 0604 00
01 00 10b5 8518 0604 00
PCIE1: Bus 00 - 0b
PCIE2: connected as Root Complex
Scanning PCI bus 0d
0d 00 1957 0040 0b20 00
PCIE2: Bus 0c - 0d
In: serial
...
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
CC: wd@denx.de
CC: sr@denx.de
CC: galak@kernel.crashing.org
|
|
Previously fsl_pci_init_port() always assumed that a port was a PCIe
port and would incorrectly print messages for a PCI port such as the
following on bootup:
PCI1: 32 bit, 33 MHz, sync, host, arbiter
Scanning PCI bus 00
PCIE1 on bus 00 - 00
This change corrects the output of fsl_pci_init_port():
PCI1: 32 bit, 33 MHz, sync, host, arbiter
Scanning PCI bus 00
PCI1 on bus 00 - 00
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
|
|
Add a new 'pci enum' command which re-enumerates the PCI buses. This
command is enabled via the CONFIG_CMD_PCI_ENUM define and can be useful
in boards with FPGAs connected via PCI/PCIe, boards that support PCI
hot-plugging, or during PCI debug.
Also enable the 'pci enum' command for X-ES's Freescale-based boards.
Signed-off-by: John Schmoller <jschmoller@xes-inc.com>
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Acked-by: Wolfgang Denk <wd@denx.de>
|
|
Previously we used an alias the pci node to determine which node to
fixup or delete. Now we use the new fdt_node_offset_by_compat_reg to
find the node to update.
Additionally, we replace the code in each board with a single macro call
that makes assumes uniform naming and reduces duplication in this area.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
As discussed on the list, move "arch/ppc" to "arch/powerpc" to
better match the Linux directory structure.
Please note that this patch also changes the "ppc" target in
MAKEALL to "powerpc" to match this new infrastructure. But "ppc"
is kept as an alias for now, to not break compatibility with
scripts using this name.
Signed-off-by: Stefan Roese <sr@denx.de>
Acked-by: Wolfgang Denk <wd@denx.de>
Acked-by: Detlev Zundel <dzu@denx.de>
Acked-by: Kim Phillips <kim.phillips@freescale.com>
Cc: Peter Tyser <ptyser@xes-inc.com>
Cc: Anatolij Gustschin <agust@denx.de>
|
|
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
|
|
If the PCI controller wasn't configured or enabled delete from the
device tree (include its alias).
For the case that we didn't even configure u-boot with knowledge of
the controller we can use the fact that the pci_controller pointer
is NULL to delete the node in the device tree. We determine that
a controller was not setup (because of HW config) based on the fact
that cfg_addr wasn't setup.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Signed-off-by: FUJITA Kazutoshi <fujita@soum.co.jp>
Signed-off-by: <wd@denx.de>
Acked-by: Stefan Roese <sr@denx.de>
|
|
The list of 4xx SoCs that should send type 1 PCI transactions
is not defined correctly. As a result PCI-PCI bridges and devices
behind them are not identified. The following 4xx variants should
send type 1 transactions: 440GX, 440GP, 440SP, 440SPE, 460EX and 460GT.
Signed-off-by: Felix Radensky <felix@embedded-sol.com>
Signed-off-by: Stefan Roese <sr@denx.de>
|
|
All users of is_fsl_pci_agent have been converted to fsl_is_pci_agent
that uses the standard PCI programming model to determine host vs
agent/end-point.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
commit 70ed869e broke fsl pcie end-point initialization.
Returning 0 is not correct. The function must return the first free
bus number for the next controller.
fsl_pci_init() must still be called and a bus allocated even if the
controller is an end-point.
Signed-off-by: Ed Swarthout <Ed.Swarthout@freescale.com>
Acked-by: Vivek Mahajan <vivek.mahajan@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
This reverts commit 70ed869ea5f6b1d13d7b140c83ec0dcd8a127ddc.
There isn't any need to modify the API for fsl_pci_init_port to pass the
status of host/agent(end-point) status. We can determine that
internally to fsl_pci_init_port. Revert the patch that makes the API
change.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Originally written by Jason Jin and Mingkai Hu for mpc8536.
When QorIQ based board is configured as a PCIe agent, then unlock/enable
inbound PCI configuration cycles and init a 4K inbound memory window;
so that a PCIe host can access the PCIe agents SDRAM at address 0x0
* Supported in fsl_pci_init_port() after adding pcie_ep as a param
* Revamped copyright in drivers/pci/fsl_pci_init.c
* Mods in 85xx based board specific pci init after this change
Signed-off-by: Vivek Mahajan <vivek.mahajan@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
General code cleanup to use in/out IO accessors as well as making
the code that prints out info sane between board and generic fsl pci
code.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
fsl_pci_init_port can be called from board specific PCI initialization
routines to setup the PCI (or PCIe) controller. This will reduce code
redundancy in most of the 85xx/86xx FSL board ports that setup PCI.
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
The old PCI ATMU setup code would just mimic the PCI regions into the
ATMU registers. For simple memory maps in which all memory, MMIO, etc
space fit into 4G this works ok. However there are issues with we have
>4G of memory as we know can't access all of memory and we need to
ensure that PCICSRBAR (PEXCSRBAR on PCIe) isn't overlapping with
anything since we can't turn it off.
We first setup outbound windows based on what the board code setup
in the pci regions for MMIO and IO access. Next we place PCICSRBAR
below the MMIO window. After which we try to setup the inbound windows
to map as much of memory as possible.
On PCIe based controllers we are able to overmap the ATMU setup since
RX & TX links are separate but report the proper amount of inbound
address space to the region tracking to ensure there is no overlap.
On PCI based controllers we use as many inbound windows as available to
map as much of the memory as possible.
Additionally we changed all the CCSR register access to use proper IO
accessor functions. Also had to add CONFIG_SYS_CCSRBAR_PHYS to some
86xx platforms that didn't have it defined.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Change the code to use the PCIe capabilities register to determine if we
are a PCIe controller or not. Additionally cleaned up some white space
and formatting in the file.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Every platform that calls fsl_pci_init calls fsl_pci_setup_inbound_windows
before it calls fsl_pci_init. There isn't any reason to just call it
from fsl_pci_init and simplify things a bit.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Every platform that calls fsl_pci_init calls pci_setup_indirect before
it calls fsl_pci_init. There isn't any reason to just call it from
fsl_pci_init and simplify things a bit.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
This patch adds support for the esd VME8349 board equipped with the
MPC8349. It's a VME PMC carrier board equipped with the Tundra
TSI148 VME-bridge.
Signed-off-by: Reinhard Arlt <reinhard.arlt@esd-electronics.com>
Signed-off-by: Stefan Roese <sr@denx.de>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
|
|
Use the standard lowercase "x" capitalization that other Freescale
architectures use for CPU defines to prevent confusion and errors
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
|
|
Rename the pci header for FSL HW so we can move some prototypes
in there and stop doing explicit externs
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Some register value was hardcoded for System memory size 128MB and
memory offset 0x08000000. This patch fixed the problem.
Signed-off-by: Yoshihiro Shimoda <shimoda.yoshihiro@renesas.com>
Signed-off-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>
|
|
It is necessary for some pci device driver.
Signed-off-by: Yoshihiro Shimoda <shimoda.yoshihiro@renesas.com>
Signed-off-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>
|
|
This is just a handy routine that reports last PCI busno: we walk
down all the hoses and return last hose's last_busno.
Will be used by PCI/PCIe initialization code.
Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
|
|
It is no longer always true that the pci bus address can be
used as the virtual address for pci accesses. pci_map_bar()
is created to return the virtual address for a pci region.
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
|
|
When we search for an address match in pci_hose_{phys_to_bus,bus_to_phys}
we should give preference to memory regions that aren't system memory.
Its possible that we have over mapped system memory in the regions and
we want to avoid depending on the order of the regions.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
The PCI_REGION_MEMORY and PCI_REGION_MEM are a bit to similar and
can be confusing when reading the code.
Rename PCI_REGION_MEMORY to PCI_REGION_SYS_MEMORY to clarify its used
for system memory mapping purposes.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Signed-off-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
|
|
Add fsl_pci_config_unlock() function to enable a
PCI/PCIe interface configured in agent/endpoint mode to
respond to inbound PCI configuration cycles.
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
|
|
Signed-off-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Signed-off-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>
|
|
fsl_pci_init.c: In function 'fsl_pci_setup_inbound_windows':
fsl_pci_init.c:122: warning: comparison is always true due to limited range of data type
The check only makes sense if we are CONFIG_PHYS_64BIT
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
The current code will cause the creation of a 4GB window
starting at 0 if we have more than 4GB of RAM installed,
which overlaps with PCI_MEM space and causes pci_bus_to_phys()
to return erroneous information. Limit the size to 4GB - 1;
which causes the code to create one 2GB and one 1GB window
instead.
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Acked-by: Andy Fleming <afleming@freescale.com>
|
|
The existing code has a few errors that need to be fixed in
order to support large RAM sizes. Fix those, and add a
comment to make it clearer.
Signed-off-by: Becky Bruce <becky.bruce@freescale.com>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andrew Fleming-AFLEMING <afleming@freescale.com>
|
|
Add a common setup function that determines the pci_region(s) based
on how much memory we have in the system.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andrew Fleming-AFLEMING <afleming@freescale.com>
|
|
* PCI Inbound window was setup incorrectly. The PCI address and system
address were swapped. The PCI address should be setting piwar/piwbear
and the system address should be setting pitar.
* Removed masking of addresses to allow for system address to support
system address & PCI address >32-bits
* Set PIWBEAR & POTEAR to allow for full 64-bit PCI addresses
* Respect the PCI_REGION_PREFETCH for inbound windows
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andrew Fleming-AFLEMING <afleming@freescale.com>
|
|
PCI bus is inherently 64-bit. While not all system require access to
the full 64-bit PCI address range some do. This allows those systems
to enable the full PCI address width via CONFIG_SYS_PCI_64BIT.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andrew Fleming-AFLEMING <afleming@freescale.com>
Acked-by: Wolfgang Denk <wd@denx.de>
|
|
Signed-off-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
|