Age | Commit message (Collapse) | Author |
|
Similar to a "real" UEFI implementation, the bootmgr looks at the
BootOrder and BootXXXX variables to try to find an EFI payload to load
and boot. This is added as a sub-command of bootefi.
The idea is that the distro bootcmd would first try loading a payload
via the bootmgr, and then if that fails (ie. first boot or corrupted
EFI variables) it would fallback to loading bootaa64.efi. (Which
would then load fallback.efi which would look for \EFI\*\boot.csv and
populate BootOrder and BootXXXX based on what it found.)
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Add EFI variable support, mapping to u-boot environment variables.
Variables are pretty important for setting up boot order, among other
things. If the board supports saveenv, then it will be called in
ExitBootServices() to persist variables set by the efi payload. (For
example, fallback.efi configuring BootOrder and BootXXXX load-option
variables.)
Variables are *not* currently exposed at runtime, post ExitBootServices.
On boards without a dedicated device for storage, which the loaded OS
is not trying to also use, this is rather tricky. One idea, at least
for boards that can persist RAM across reboot, is to keep a "journal"
of modified variables in RAM, and then turn halt into a reboot into
u-boot, plus store variables, plus halt. Whatever the solution, it
likely involves some per-board support.
Mapping between EFI variables and u-boot variables:
efi_$guid_$varname = {attributes}(type)value
For example:
efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_OsIndicationsSupported=
"{ro,boot,run}(blob)0000000000000000"
efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_BootOrder=
"(blob)00010000"
The attributes are a comma separated list of these possible
attributes:
+ ro - read-only
+ boot - boot-services access
+ run - runtime access
NOTE: with current implementation, no variables are available after
ExitBootServices, and all are persisted (if possible).
If not specified, the attributes default to "{boot}".
The required type is one of:
+ utf8 - raw utf8 string
+ blob - arbitrary length hex string
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
fallback.efi (and probably other things) use UEFI's simple-file-system
protocol and file support to search for OS's to boot.
Signed-off-by: Rob Clark <robdclark@gmail.com>
[agraf: whitespace fixes, unsigned fixes]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Get rid of the hacky fake boot-device and duplicate device-path
constructing (which needs to match what efi_disk and efi_net do).
Instead convert over to use efi_device_path helpers to construct
device-paths, and use that to look up the actual boot device.
Also, extract out a helper to plug things in properly to the
loaded_image. In a following patch we'll want to re-use this in
efi_load_image() to handle the case of loading an image from a
file_path.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
It needs to handle more device-path node types, and also multiple levels
of path hierarchy. To simplify this, initially construct utf8 string to
a temporary buffer, and then allocate the real utf16 buffer that is
returned. This should be mostly for debugging or at least not critical-
path so an extra copy won't hurt, and is saner than the alternative.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Helpers to construct device-paths from devices, partitions, files, and
for parsing and manipulating device-paths.
For non-legacy devices, this will use u-boot's device-model to construct
device-paths which include bus hierarchy to construct device-paths. For
legacy devices we still fake it, but slightly more convincingly.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
For the correct implementation of the task priority level (TPL)
calling the notification function must be queued.
Add a status field 'queued' to events.
In function efi_signal_event set status queued if a notification
function exists and reset it after we have called the function.
A later patch will add a check of the TPL here.
In efi_create_event and efi_close_event unset the queued status.
In function efi_wait_for_event and efi_check_event
queue the notification function.
In efi_timer_check call the efi_notify_event
if the status queued is set.
For all timer events set status signaled.
In efi_console_timer_notify set the signaled state of the
WaitForKey event.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
A testing framework for the EFI API is provided.
It can be executed with the 'bootefi selftest' command.
It is coded in a way that at a later stage we may turn it
into a standalone EFI application. The current build system
does not allow this yet.
All tests use a driver model and are run in three phases:
setup, execute, teardown.
A test may be setup and executed at boottime,
it may be setup at boottime and executed at runtime,
or it may be setup and executed at runtime.
After executing all tests the system is reset.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Macro EFI_CALL was introduced to call an UEFI function.
Unfortunately it does not support return values.
Most UEFI functions have a return value.
So let's rename EFI_CALL to EFI_CALL_VOID and introduce a
new EFI_CALL macro that supports return values.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
To understand what is happening in OpenProtocol or LocateProtocol
it is necessary to know the protocol interface GUID.
Let's write a debug message.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
UEFI API functions have different return types.
Some return a value of type EFI_STATUS other don't.
We therefore should not cast the return value of EFI_EXIT
to another type than the expression passed to EFI_EXIT.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This should make it easier to see when a callback back to UEFI world
calls back in to the u-boot world, and generally match up EFI_ENTRY()
and EFI_EXIT() calls.
Signed-off-by: Rob Clark <robdclark@gmail.com>
[agraf: remove static from const var]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Missing an EFI_ENTRY() or doubling up EFI_EXIT() leads to non-obvious
crashes. Let's add some error checking.
Signed-off-by: Rob Clark <robdclark@gmail.com>
[agraf: fix bogus assert() and fix app_gd breakage]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Rather than open-coding EFI_EXIT() + callback + EFI_ENTRY(), introduce
an EFI_CALL() macro. This makes callbacks into UEFI world (of which
there will be more in the future) more concise and easier to locate in
the code.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
There are a couple spots doing things like:
return EFI_EXIT(some_fxn(...));
which I handn't noticed before. With addition of printing return value
in the EFI_EXIT() macro, now the fxn call was getting evaluated twice.
Which we didn't really want.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
There are a bunch of protocols which should be exposed by GUID but are
not. Add a helper macro to create an efi_object, to avoid much typing.
Note that using the pointer for efiobj->handle is semi-arbitrary. We
just need a unique value to match the efiobj supporting the protocol
with the handle that LocateHandle() returns..
See LibLocateProtocol() in gnu-efi. It does LocateHandle() to find all
the handles, and then loops over them calling HandleProtocol() with the
GUID of the protocol it is trying to find.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Turns out this is rather useful to tracking down where things fail.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The first argument 'type' of CreateEvent is an 32bit unsigned
integer bitmap and not an enum.
The second argument 'type' of SetTimer take values of an
enum which is called EFI_TIMER_DELAY in the UEFI standard.
To avoid confusion rename efi_event_type to efi_timer_delay.
Reported-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Want to re-use this for file protocol, which I'm working on.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Set up a timer event and the WaitForKey event.
In the notify function of the timer event check for console input
and signal the WaitForKey event accordingly.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
efi_set_timer is refactored to make the function callable internally.
Wrapper function efi_set_timer_ext is provided for EFI applications.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
efi_create_event is refactored to make it possible to call it
internally. For EFI applications wrapper function
efi_create_event_ext is created.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The UEFI standard defines the type for the tpl level as EFI_TPL
alias UINTN.
UINTN is an integer is defined as an unsigned integer of native
width. So we can use size_t for the definition.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Up to now the boot time supported only a single event.
This patch now allows four events.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
ConvertPathToText is implemented for
* type 4 - media device path
* subtype 4 - file path
This is the kind of device path we hand out for block devices.
All other cases may be implemented later.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
[agraf: fix whitespace]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The UEFI specification requires that LocateProtol finds the first
handle supporting the protocol and to return a pointer to its
interface.
So we have to assign the protocols to an efi_object and not use
any separate storage.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Four protocols per object is too few to run iPXE.
Let's raise the number of protocols per object to eight.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
efi_open_protocol was implemented to call a protocol specific open
function to retrieve the protocol interface.
The UEFI specification does not know of such a function.
It is not possible to implement InstallProtocolInterface with the
current design.
With the patch the protocol interface itself is stored in the list
of installed protocols of an efi_object instead of an open function.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
[agraf: fix efi gop support]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The efi_add_runtime_mmio prototype for disabled CONFIG_EFI_LOADER
was different from the enabled one. Sync them.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Compiler attributes are more commonly __foo style tags rather than big
upper case eye sores like EFI_RUNTIME_TEXT.
Simon Glass felt quite strongly about this, so this patch converts our
existing defines over to more eye friendly ones.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
These are missing in some functions. Add them to keep things consistent.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
We can pass SMBIOS easily as EFI configuration table to an EFI payload. This
patch adds enablement for that case.
While at it, we also enable SMBIOS generation for ARM systems, since they support
EFI_LOADER.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
We want to be able to add configuration table entries from our own code as
well as from EFI payload code. Export the boot service function internally
too, so that we can reuse it.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
EFI allows an OS to leverage firmware drivers while the OS is running. In the
generic code we so far had to stub those implementations out, because we would
need board specific knowledge about MMIO setups for it.
However, boards can easily implement those themselves. This patch provides the
framework so that a board can implement its own versions of get_time and
reset_system which would actually do something useful.
While at it we also introduce a simple way for code to reserve MMIO pointers
as runtime available.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Currently each allocation creates a new mapping. Readding the mapping
as free memory (EFI_CONVENTIONAL_MEMORY) potentially allows to hand out
an existing mapping, thus limiting the number of mapping descriptors in
the memory map.
Mitigates a problem with current (4.8rc7) linux kernels when doing an
efi_get_memory map, resulting in an infinite loop. Space for the memory
map is reserved with allocate_pool (implicitly creating a new mapping) and
filled. If there is insufficient slack space (8 entries) in the map, the
space is freed and a new round is started, with space for one more entry.
As each round increases requirement and allocation by exactly one, there
is never enough slack space. (At least 32 entries are allocated, so as
long as there are less than 24 entries, there is enough slack).
Earlier kernels reserved no slack, and did less allocations, so this
problem was not visible.
Signed-off-by: Stefan Brüns <stefan.bruens@rwth-aachen.de>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
We need a functional free_pool implementation, as otherwise each
allocate_pool causes growth of the memory descriptor table.
Different to free_pages, free_pool does not provide the size for the
to be freed allocation, thus we have to track the size ourselves.
As the only EFI requirement for pool allocation is an alignment of
8 bytes, we can keep allocating a range using the page allocator,
reserve the first 8 bytes for our bookkeeping and hand out the
remainder to the caller. This saves us from having to use any
independent data structures for tracking.
To simplify the conversion between pool allocations and the corresponding
page allocation, we create an auxiliary struct efi_pool_allocation.
Given the allocation size free_pool size can handoff freeing the page
range, which was indirectly allocated by a call to allocate_pool,
to free_pages.
Signed-off-by: Stefan Brüns <stefan.bruens@rwth-aachen.de>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
We currently handle efi_allocate_pool() in our boot time service
file. In the following patch, pool allocation will receive additional
internal semantics that we should preserve inside efi_memory.c instead.
As foundation for those changes, split the function into an externally
facing efi_allocate_pool_ext() for use by payloads and an internal helper
efi_allocate_pool() in efi_memory.c that handles the actual allocation.
While at it, change the magic 0xfff / 12 constants to the more obvious
EFI_PAGE_MASK/SHIFT defines.
Signed-off-by: Stefan Brüns <stefan.bruens@rwth-aachen.de>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
We introduced special "DEBUG_EFI" defines when the efi loader
support was new. After giving it a bit of thought, turns out
we really didn't have to - the normal #define DEBUG infrastructure
works well enough for efi loader as well.
So this patch switches to the common debug() and #define DEBUG
way of printing debug information.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
For odroid-c2 (arch-meson) for now disable designware eth as meson
now needs to do some harder GPIO work.
Signed-off-by: Tom Rini <trini@konsulko.com>
Conflicts:
lib/efi_loader/efi_disk.c
Modified:
configs/odroid-c2_defconfig
|
|
Some hardware that is supported by U-Boot can not handle DMA above 32bits.
For these systems, we need to come up with a way to expose the disk interface
in a safe way.
This patch implements EFI specific bounce buffers. For non-EFI cases, this
apparently was no issue so far, since we can just define our environment
variables conveniently.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This code does not currently build with driver model enabled for block
devices. Update it to correct this.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Alexander Graf <agraf@suse.de>
|
|
We can now successfully boot EFI applications from disk, but users
may want to also run them from a PXE setup.
This patch implements rudimentary network support, allowing a payload
to send and receive network packets.
With this patch, I was able to successfully run grub2 with network
access inside of QEMU's -M xlnx-ep108.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The payload gets information on where it got loaded from. This includes
the device as well as file path.
So far we've treated both as the same thing and always gave it the device
name. However, in some situations grub2 actually wants to find its loading
path to find its configuration file.
So let's split the two semantically separte bits into separate structs and
pass the loaded file name into our payload when we load it using "load".
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The EFI standard defines a simple boot protocol that an EFI payload can use
to access video output.
This patch adds support to expose exactly that one (and the mode already in
use) as possible graphical configuration to an EFI payload.
With this, I can successfully run grub2 with graphical output.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
EFI payloads can query for the device they were booted from. Because
we have a disconnect between loading binaries and running binaries,
we passed in a dummy device path so far.
Unfortunately that breaks grub2's logic to find its configuration
file from the same device it was booted from.
This patch adds logic to have the "load" command call into our efi
code to set the device path to the one we last loaded a binary from.
With this grub2 properly detects where we got booted from and can
find its configuration file, even when searching by-partition.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The EFI loader needs to maintain views of memory - general system memory
windows as well as used locations inside those and potential runtime service
MMIO windows.
To manage all of these, add a few helpers that maintain an internal
representation of the map the similar to how the EFI API later on reports
it to the application.
For allocations, the scheme is very simple. We basically allow allocations
to replace chunks of previously done maps, so that a new LOADER_DATA
allocation for example can remove a piece of the RAM map. When no specific
address is given, we just take the highest possible address in the lowest
RAM map that fits the allocation size.
Signed-off-by: Alexander Graf <agraf@suse.de>
Tested-by: Simon Glass <sjg@chromium.org>
|
|
A EFI applications usually want to access storage devices to load data from.
This patch adds support for EFI disk interfaces. It loops through all block
storage interfaces known to U-Boot and creates an EFI object for each existing
one. EFI applications can then through these objects call U-Boot's read and
write functions.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
[trini: Update for various DM changes since posting]
Signed-off-by: Tom Rini <trini@konsulko.com>
|
|
After booting has finished, EFI allows firmware to still interact with the OS
using the "runtime services". These callbacks live in a separate address space,
since they are available long after U-Boot has been overwritten by the OS.
This patch adds enough framework for arbitrary code inside of U-Boot to become
a runtime service with the right section attributes set. For now, we don't make
use of it yet though.
We could maybe in the future map U-boot environment variables to EFI variables
here.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
|
|
One of the basic EFI interfaces is the console interface. Using it an EFI
application can interface with the user. This patch implements an EFI console
interface using getc() and putc().
Today, we only implement text based consoles. We also convert the EFI Unicode
characters to UTF-8 on the fly, hoping that everyone managed to jump on the
train by now.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
|
|
When an EFI application runs, it has access to a few descriptor and callback
tables to instruct the EFI compliant firmware to do things for it. The bulk
of those interfaces are "boot time services". They handle all object management,
and memory allocation.
This patch adds support for the boot time services and also exposes a system
table, which is the point of entry descriptor table for EFI payloads.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
|