Age | Commit message (Collapse) | Author |
|
We now pass a Section object to these functions rather than an Image.
Rename the parameters to avoid confusion.
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from. So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry. Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.
In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.
This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents. There's also a few places where I found we did not have a tag
and have introduced one.
Signed-off-by: Tom Rini <trini@konsulko.com>
|
|
Binman construct images consisting of multiple binary files. These files
sometimes need to know (at run timme) where their peers are located. For
example, SPL may want to know where U-Boot is located in the image, so
that it can jump to U-Boot correctly on boot.
In general the positions where the binaries end up after binman has
finished packing them cannot be known at compile time. One reason for
this is that binman does not know the size of the binaries until
everything is compiled, linked and converted to binaries with objcopy.
To make this work, we add a feature to binman which checks each binary
for symbol names starting with '_binman'. These are then decoded to figure
out which entry and property they refer to. Then binman writes the value
of this symbol into the appropriate binary. With this, the symbol will
have the correct value at run time.
Macros are used to make this easier to use. As an example, this declares
a symbol that will access the 'u-boot-spl' entry to find the 'pos' value
(i.e. the position of SPL in the image):
binman_sym_declare(unsigned long, u_boot_spl, pos);
This converts to a symbol called '_binman_u_boot_spl_prop_pos' in any
binary that includes it. Binman then updates the value in that binary,
ensuring that it can be accessed at runtime with:
ulong u_boot_pos = binman_sym(ulong, u_boot_spl, pos);
This assigns the variable u_boot_pos to the position of SPL in the image.
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
The elf module can provide some debugging information to assist with
figuring out what is going wrong. This is also useful in tests. Update the
-D option so that it is passed through to tests as well.
Signed-off-by: Simon Glass <sjg@chromium.org>
|
|
In some cases we need to read symbols from U-Boot. At present we have a
a few cases which does this via 'nm' and 'grep'.
It is better to use objdump since that tells us the size of the symbols
and also whether it is weak or not.
Add a new module which reads ELF information from files. Update existing
uses of 'nm' to use this module.
Signed-off-by: Simon Glass <sjg@chromium.org>
|