From 69366bf42f22d67efce8da3f8c40a43d4a3c2695 Mon Sep 17 00:00:00 2001 From: roy zang Date: Thu, 2 Nov 2006 18:34:47 +0800 Subject: Add README file for mpc7448hpc2 board. Signed-off-by: Roy Zang --- doc/README.mpc7448hpc2 | 193 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 193 insertions(+) create mode 100644 doc/README.mpc7448hpc2 (limited to 'doc') diff --git a/doc/README.mpc7448hpc2 b/doc/README.mpc7448hpc2 new file mode 100644 index 0000000000..5142a0f638 --- /dev/null +++ b/doc/README.mpc7448hpc2 @@ -0,0 +1,193 @@ +Freescale MPC7448hpc2 (Taiga) board +=================================== + +Created 08/11/2006 Roy Zang +-------------------------- +MPC7448hpc2 (Taiga) board is a high-performance PowerPC server reference +design, which is optimized for high speed throughput between the processor and +the memory, disk drive and Ethernet port subsystems. + +MPC7448hpc2(Taiga) is designed to the micro-ATX chassis, allowing it to be +used in 1U or 2U rack-mount chassis¡¯, as well as in standard ATX/Micro-ATX +chassis. + +Building U-Boot +------------------ +The mpc7448hpc2 code base is known to compile using: + Binutils 2.15, Gcc 3.4.3, Glibc 2.3.3 + + $ make mpc7448hpc2_config + Configuring for mpc7448hpc2 board... + + $ make + +Memory Map +---------- + +The memory map is setup for Linux to operate properly. + +The mapping is: + + Range Start Range End Definition Size + + 0x0000_0000 0x7fff_ffff DDR 2G + 0xe000_0000 0xe7ff_ffff PCI Memory 128M + 0xfa00_0000 0xfaff_ffff PCI IO 16M + 0xfb00_0000 0xfbff_ffff PCI Config 16M + 0xfc00_0000 0xfc0f_ffff NVRAM/CADMUS 1M + 0xfe00_0000 0xfeff_ffff PromJet 16M + 0xff00_0000 0xff80_0000 FLASH (boot flash) 8M + 0xff80_0000 0xffff_ffff FLASH (second half flash) 8M + + +Using Flash +----------- + +The MPC7448hpc2 board has two "banks" of flash, each 8MB in size +(2^23 = 0x00800000). + +Note: the "bank" here refers to half of the flash. In fact, there is only one +bank of flash, which is divided into low and high half. Each is controlled by +the most significant bit of the address bus. The so called "bank" is only for +convenience. + +There is a switch which allows the "bank" to be selected. The switch +settings for updating flash are given below. + +The u-boot commands for copying the boot-bank into the secondary bank are +as follows: + + erase ff800000 ff880000 + cp.b ff000000 ff800000 80000 + +U-boot commands for downloading an image via tftp and flashing +it into the secondary bank: + + tftp 10000 + erase ff000000 ff080000 + cp.b 10000 ff000000 80000 + + +After copying the image into the second bank of flash, be sure to toggle +SW3[4] on board before resetting the board in order to set the +secondary bank as the boot-bank. + + +Board Switches +---------------------- + + +Most switches on the board should not be changed. The most frequent +user-settable switches on the board are used to configure +the flash banks and determining the PCI frequency. + +SW1[1-5]: Processor core voltage + + 12345 Core Voltage + ----- + SW1=01111 1.000V. + SW1=01101 1.100V. + SW1=01011 1.200V. + SW1=01001 1.300V only for MPC7447A. + + +SW2[1-6]: CPU core frequency + + CPU Core Frequency (MHz) + Bus Frequency + 123456 100 133 167 200 Ratio + + ------ + SW2=101100 500 667 833 1000 5x + SW2=100100 550 733 917 1100 5.5x + SW2=110100 600 800 1000 1200 6x + SW2=010100 650 866 1083 1300 6.5x + SW2=001000 700 930 1167 1400 7x + SW2=000100 750 1000 1250 1500 7.5x + SW2=110000 800 1066 1333 1600 8x + SW2=011000 850 1333 1417 1700 8.5x only for MPC7447A + SW2=011110 900 1200 1500 1800 9x + +This table shows only a subset of available frequency options; see the CPU +hardware specifications for more information. + + +SW2[7-8]: Bus Protocol and CPU Reset Option + + 7 + - + SW2=0 System bus uses MPX bus protocol + SW2=1 System bus uses 60x bus protocol + + 8 + - + SW2=0 TSI108 can cause CPU reset + SW2=1 TSI108 can not cause CPU reset + + +SW3[1-8] system options + + 123 + --- + SW3=xxx Connected to GPIO[0:2] on TSI108 + + 4 + - + SW3=0 CPU boots from low half of flash + SW3=1 CPU boots from high half of flash + + 5 + - + SW3=0 SATA and slot2 connected to PCI bus + SW3=1 Only slot1 connected to PCI bus + + 6 + - + SW3=0 USB connected to PCI bus + SW3=1 USB disconnected from PCI bus + + 7 + - + SW3=0 Flash is write protected + SW3=1 Flash is NOT write protected + + 8 + - + SW3=0 CPU will boot from flash + SW3=1 CPU will boot from PromJet + +SW4[1-3]: System bus frequency + + Bus Frequency (MHz) + --- + SW4=010 183 + SW4=011 100 + SW4=100 133 + SW4=101 166 only for MPC7447A + SW4=110 200 only for MPC7448 + others reserved + + +SW4[4-6]: DDR2 SDRAM frequency + + Bus Frequency (MHz) + --- + SW4=000 external clock + SW4=011 system clock + SW4=100 133 + SW4=101 166 + SW4=110 200 + others reserved + + +SW4[7-8]: PCI/PCI-X frequency control + 7 + - + SW4=0 PCI/PCI-X bus operates normally + SW4=1 PCI bus forced to PCI-33 mode + + 8 + - + SW4=0 PCI-X mode at 133 MHz allowed + SW4=1 PCI-X mode limited to 100 MHz + -- cgit From ee311214e0d216f904feea269599d0934bf71f23 Mon Sep 17 00:00:00 2001 From: roy zang Date: Fri, 1 Dec 2006 11:47:36 +0800 Subject: Clean up the code according to codestyle: (1) remove some C++ comments. (2) remove trailing white space. (3) remove trailing empty line. (4) Indentation by table. (5) remove {} in one line condition. (6) add space before '(' in function call. Remove some weird printf () output. Add necessary comments. Modified Makefile to support building in a separate directory. --- doc/README.mpc7448hpc2 | 206 ++++++++++++++++++++++++------------------------- 1 file changed, 99 insertions(+), 107 deletions(-) (limited to 'doc') diff --git a/doc/README.mpc7448hpc2 b/doc/README.mpc7448hpc2 index 5142a0f638..0e40e39269 100644 --- a/doc/README.mpc7448hpc2 +++ b/doc/README.mpc7448hpc2 @@ -3,23 +3,23 @@ Freescale MPC7448hpc2 (Taiga) board Created 08/11/2006 Roy Zang -------------------------- -MPC7448hpc2 (Taiga) board is a high-performance PowerPC server reference -design, which is optimized for high speed throughput between the processor and +MPC7448hpc2 (Taiga) board is a high-performance PowerPC server reference +design, which is optimized for high speed throughput between the processor and the memory, disk drive and Ethernet port subsystems. -MPC7448hpc2(Taiga) is designed to the micro-ATX chassis, allowing it to be -used in 1U or 2U rack-mount chassis¡¯, as well as in standard ATX/Micro-ATX +MPC7448hpc2(Taiga) is designed to the micro-ATX chassis, allowing it to be +used in 1U or 2U rack-mount chassis¡¯, as well as in standard ATX/Micro-ATX chassis. Building U-Boot ------------------ The mpc7448hpc2 code base is known to compile using: - Binutils 2.15, Gcc 3.4.3, Glibc 2.3.3 + Binutils 2.15, Gcc 3.4.3, Glibc 2.3.3 - $ make mpc7448hpc2_config - Configuring for mpc7448hpc2 board... + $ make mpc7448hpc2_config + Configuring for mpc7448hpc2 board... - $ make + $ make Memory Map ---------- @@ -28,25 +28,24 @@ The memory map is setup for Linux to operate properly. The mapping is: - Range Start Range End Definition Size - - 0x0000_0000 0x7fff_ffff DDR 2G - 0xe000_0000 0xe7ff_ffff PCI Memory 128M - 0xfa00_0000 0xfaff_ffff PCI IO 16M - 0xfb00_0000 0xfbff_ffff PCI Config 16M - 0xfc00_0000 0xfc0f_ffff NVRAM/CADMUS 1M - 0xfe00_0000 0xfeff_ffff PromJet 16M - 0xff00_0000 0xff80_0000 FLASH (boot flash) 8M - 0xff80_0000 0xffff_ffff FLASH (second half flash) 8M + Range Start Range End Definition Size + 0x0000_0000 0x7fff_ffff DDR 2G + 0xe000_0000 0xe7ff_ffff PCI Memory 128M + 0xfa00_0000 0xfaff_ffff PCI IO 16M + 0xfb00_0000 0xfbff_ffff PCI Config 16M + 0xfc00_0000 0xfc0f_ffff NVRAM/CADMUS 1M + 0xfe00_0000 0xfeff_ffff PromJet 16M + 0xff00_0000 0xff80_0000 FLASH (boot flash) 8M + 0xff80_0000 0xffff_ffff FLASH (second half flash) 8M Using Flash ----------- -The MPC7448hpc2 board has two "banks" of flash, each 8MB in size -(2^23 = 0x00800000). +The MPC7448hpc2 board has two "banks" of flash, each 8MB in size +(2^23 = 0x00800000). -Note: the "bank" here refers to half of the flash. In fact, there is only one +Note: the "bank" here refers to half of the flash. In fact, there is only one bank of flash, which is divided into low and high half. Each is controlled by the most significant bit of the address bus. The so called "bank" is only for convenience. @@ -57,137 +56,130 @@ settings for updating flash are given below. The u-boot commands for copying the boot-bank into the secondary bank are as follows: - erase ff800000 ff880000 - cp.b ff000000 ff800000 80000 + erase ff800000 ff880000 + cp.b ff000000 ff800000 80000 U-boot commands for downloading an image via tftp and flashing it into the secondary bank: - tftp 10000 - erase ff000000 ff080000 - cp.b 10000 ff000000 80000 - + tftp 10000 + erase ff000000 ff080000 + cp.b 10000 ff000000 80000 After copying the image into the second bank of flash, be sure to toggle SW3[4] on board before resetting the board in order to set the secondary bank as the boot-bank. - Board Switches ---------------------- - Most switches on the board should not be changed. The most frequent user-settable switches on the board are used to configure the flash banks and determining the PCI frequency. SW1[1-5]: Processor core voltage - 12345 Core Voltage - ----- - SW1=01111 1.000V. - SW1=01101 1.100V. - SW1=01011 1.200V. - SW1=01001 1.300V only for MPC7447A. + 12345 Core Voltage + ----- + SW1=01111 1.000V. + SW1=01101 1.100V. + SW1=01011 1.200V. + SW1=01001 1.300V only for MPC7447A. SW2[1-6]: CPU core frequency - CPU Core Frequency (MHz) + CPU Core Frequency (MHz) Bus Frequency - 123456 100 133 167 200 Ratio + 123456 100 133 167 200 Ratio - ------ - SW2=101100 500 667 833 1000 5x - SW2=100100 550 733 917 1100 5.5x - SW2=110100 600 800 1000 1200 6x - SW2=010100 650 866 1083 1300 6.5x - SW2=001000 700 930 1167 1400 7x - SW2=000100 750 1000 1250 1500 7.5x - SW2=110000 800 1066 1333 1600 8x - SW2=011000 850 1333 1417 1700 8.5x only for MPC7447A - SW2=011110 900 1200 1500 1800 9x - -This table shows only a subset of available frequency options; see the CPU + ------ + SW2=101100 500 667 833 1000 5x + SW2=100100 550 733 917 1100 5.5x + SW2=110100 600 800 1000 1200 6x + SW2=010100 650 866 1083 1300 6.5x + SW2=001000 700 930 1167 1400 7x + SW2=000100 750 1000 1250 1500 7.5x + SW2=110000 800 1066 1333 1600 8x + SW2=011000 850 1333 1417 1700 8.5x only for MPC7447A + SW2=011110 900 1200 1500 1800 9x + +This table shows only a subset of available frequency options; see the CPU hardware specifications for more information. - SW2[7-8]: Bus Protocol and CPU Reset Option - 7 - - - SW2=0 System bus uses MPX bus protocol - SW2=1 System bus uses 60x bus protocol - - 8 - - - SW2=0 TSI108 can cause CPU reset - SW2=1 TSI108 can not cause CPU reset + 7 + - + SW2=0 System bus uses MPX bus protocol + SW2=1 System bus uses 60x bus protocol + 8 + - + SW2=0 TSI108 can cause CPU reset + SW2=1 TSI108 can not cause CPU reset SW3[1-8] system options - 123 - --- - SW3=xxx Connected to GPIO[0:2] on TSI108 + 123 + --- + SW3=xxx Connected to GPIO[0:2] on TSI108 - 4 - - - SW3=0 CPU boots from low half of flash - SW3=1 CPU boots from high half of flash + 4 + - + SW3=0 CPU boots from low half of flash + SW3=1 CPU boots from high half of flash - 5 - - - SW3=0 SATA and slot2 connected to PCI bus - SW3=1 Only slot1 connected to PCI bus + 5 + - + SW3=0 SATA and slot2 connected to PCI bus + SW3=1 Only slot1 connected to PCI bus - 6 - - - SW3=0 USB connected to PCI bus - SW3=1 USB disconnected from PCI bus + 6 + - + SW3=0 USB connected to PCI bus + SW3=1 USB disconnected from PCI bus - 7 - - - SW3=0 Flash is write protected - SW3=1 Flash is NOT write protected + 7 + - + SW3=0 Flash is write protected + SW3=1 Flash is NOT write protected - 8 - - - SW3=0 CPU will boot from flash - SW3=1 CPU will boot from PromJet + 8 + - + SW3=0 CPU will boot from flash + SW3=1 CPU will boot from PromJet SW4[1-3]: System bus frequency Bus Frequency (MHz) - --- - SW4=010 183 - SW4=011 100 - SW4=100 133 - SW4=101 166 only for MPC7447A - SW4=110 200 only for MPC7448 - others reserved - + --- + SW4=010 183 + SW4=011 100 + SW4=100 133 + SW4=101 166 only for MPC7447A + SW4=110 200 only for MPC7448 + others reserved SW4[4-6]: DDR2 SDRAM frequency Bus Frequency (MHz) - --- - SW4=000 external clock - SW4=011 system clock - SW4=100 133 - SW4=101 166 - SW4=110 200 - others reserved - + --- + SW4=000 external clock + SW4=011 system clock + SW4=100 133 + SW4=101 166 + SW4=110 200 + others reserved SW4[7-8]: PCI/PCI-X frequency control - 7 - - - SW4=0 PCI/PCI-X bus operates normally - SW4=1 PCI bus forced to PCI-33 mode - - 8 - - - SW4=0 PCI-X mode at 133 MHz allowed - SW4=1 PCI-X mode limited to 100 MHz + 7 + - + SW4=0 PCI/PCI-X bus operates normally + SW4=1 PCI bus forced to PCI-33 mode + + 8 + - + SW4=0 PCI-X mode at 133 MHz allowed + SW4=1 PCI-X mode limited to 100 MHz -- cgit From 48aecd969171a6e99a55fae04933857787f9a5bd Mon Sep 17 00:00:00 2001 From: Dave Liu Date: Thu, 7 Dec 2006 21:14:51 +0800 Subject: mpc83xx: Add the MPC832XEMDS board readme Add the MPC832XEMDS board readme Signed-off-by: Dave Liu --- doc/README.mpc832xemds | 129 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 129 insertions(+) create mode 100644 doc/README.mpc832xemds (limited to 'doc') diff --git a/doc/README.mpc832xemds b/doc/README.mpc832xemds new file mode 100644 index 0000000000..4cfc0fb752 --- /dev/null +++ b/doc/README.mpc832xemds @@ -0,0 +1,129 @@ +Freescale MPC832XEMDS Board +----------------------------------------- +1. Board Switches and Jumpers +1.0 There are five Dual-In-Line Packages(DIP) Switches on MPC832XE SYS board + For some reason, the HW designers describe the switch settings + in terms of 0 and 1, and then map that to physical switches where + the label "On" refers to logic 0 and "Off" is logic 1. + + Switch bits are numbered 1 through, like, 4 6 8 or 10, but the + bits may contribute to signals that are numbered based at 0, + and some of those signals may be high-bit-number-0 too. Heed + well the names and labels and do not get confused. + + "Off" == 1 + "On" == 0 + + SW3 is switch 18 as silk-screened onto the board. + SW4[8] is the bit labled 8 on Switch 4. + SW5[1:6] refers to bits labeled 1 through 6 in order on switch 5. + SW6[7:1] refers to bits labeled 7 through 1 in order on switch 6. + SW7[1:8]= 0000_0001 refers to bits labeled 1 through 6 is set as "On" + and bits labeled 8 is set as "Off". + +1.1 For the MPC832XEMDS PROTO Board + + First, make sure the board default setting is consistent with the document + shipped with your board. Then apply the following setting: + SW3[1-8]= 0000_1000 (core PLL setting, core enable) + SW4[1-8]= 0001_0010 (Flash boot on local bus, system PLL setting) + SW5[1-8]= 0010_0110 (Boot from high end) + SW6[1-8]= 0011_0100 (Flash boot on 16 bit local bus) + SW7[1-8]= 1000_0011 (QE PLL setting) + + ENET3/4 MII mode settings: + J1 1-2 (ETH3_TXER) + J2 2-3 (MII mode) + J3 2-3 (MII mode) + J4 2-3 (ADSL clockOscillator) + J5 1-2 (ETH4_TXER) + J6 2-3 (ClockOscillator) + JP1 removed (don't force PORESET) + JP2 mounted (ETH4/2 MII) + JP3 mounted (ETH3 MII) + JP4 mounted (HRCW from BCSR) + + ENET3/4 RMII mode settings: + J1 1-2 (ETH3_TXER) + J2 1-2 (RMII mode) + J3 1-2 (RMII mode) + J4 2-3 (ADSL clockOscillator) + J5 1-2 (ETH4_TXER) + J6 2-3 (ClockOscillator) + JP1 removed (don't force PORESET) + JP2 removed (ETH4/2 RMII) + JP3 removed (ETH3 RMII) + JP4 removed (HRCW from FLASH) + + on board Oscillator: 66M + + +2. Memory Map + +2.1 The memory map should look pretty much like this: + + 0x0000_0000 0x7fff_ffff DDR 2G + 0x8000_0000 0x8fff_ffff PCI MEM prefetch 256M + 0x9000_0000 0x9fff_ffff PCI MEM non-prefetch 256M + 0xc000_0000 0xdfff_ffff Empty 512M + 0xe000_0000 0xe01f_ffff Int Mem Reg Space 2M + 0xe020_0000 0xe02f_ffff Empty 1M + 0xe030_0000 0xe03f_ffff PCI IO 1M + 0xe040_0000 0xefff_ffff Empty 252M + 0xf400_0000 0xf7ff_ffff Empty 64M + 0xf800_0000 0xf800_7fff BCSR on CS1 32K + 0xf800_8000 0xf800_ffff PIB CS2 32K + 0xf801_0000 0xf801_7fff PIB CS3 32K + 0xfe00_0000 0xfeff_ffff FLASH on CS0 16M + + +3. Definitions + +3.1 Explanation of NEW definitions in: + + include/configs/MPC832XEPB.h + + CONFIG_MPC83XX MPC83XX family for MPC8349, MPC8360 and MPC832X + CONFIG_MPC832X MPC832X specific + CONFIG_MPC832XEMDS MPC832XEMDS board specific + +4. Compilation + + Assuming you're using BASH shell: + + export CROSS_COMPILE=your-cross-compile-prefix + cd u-boot + make distclean + make MPC832XEMDS_config + make + + MPC832X support PCI 33MHz and PCI 66MHz, to make u-boot support PCI: + + 1)Make sure the DIP SW support PCI mode as described in Section 1.1. + + 2)To Make U-Boot image support PCI 33MHz, use + Make MPC832XEMDS_HOST_33_config + + 3)To Make U-Boot image support PCI 66MHz, use + Make MPC832XEMDS_HOST_66M_config + +5. Downloading and Flashing Images + +5.0 Download over network: + + tftp 10000 u-boot.bin + +5.1 Reflash U-boot Image using U-boot + + tftp 20000 u-boot.bin + protect off fe000000 fe0fffff + erase fe000000 fe0fffff + cp.b 20000 fe000000 xxxx + +You have to supply the correct byte count with 'xxxx' from the TFTP result log. +Maybe 3ffff will work too, that corresponds to the erased sectors. + + +6. Notes + 1) The console baudrate for MPC832XEMDS is 115200bps. + -- cgit From 91e25769771c1164ed63ffca0add49f934ae3343 Mon Sep 17 00:00:00 2001 From: Paul Gortmaker Date: Tue, 16 Jan 2007 11:38:14 -0500 Subject: mpc83xx: U-Boot support for Wind River SBC8349 I've redone the SBC8349 support to match git-current, which incorporates all the MPC834x updates from Freescale since the 1.1.6 release, including the DDR changes. I've kept all the SBC8349 files as parallel as possible to the MPC8349EMDS ones for ease of maintenance and to allow for easy inspection of what was changed to support this board. Hence the SBC8349 U-Boot has FDT support and everything else that the MPC8349EMDS has. Fortunately the Freescale updates added support for boards using CS0, but I had to change spd_sdram.c to allow for board specific settings for the sdram_clk_cntl (it is/was hard coded to zero, and that remains the default if the board doesn't specify a value.) Hopefully this should be mergeable as-is and require no whitespace cleanups or similar, but if something doesn't measure up then let me know and I'll fix it. Thanks, Paul. --- doc/README.sbc8349 | 99 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 99 insertions(+) create mode 100644 doc/README.sbc8349 (limited to 'doc') diff --git a/doc/README.sbc8349 b/doc/README.sbc8349 new file mode 100644 index 0000000000..a0ac6388d6 --- /dev/null +++ b/doc/README.sbc8349 @@ -0,0 +1,99 @@ + + + U-Boot for Wind River SBC834x Boards + ==================================== + + +The Wind River SBC834x board is a 6U form factor (not CPCI) reference +design that uses the MPC8347E or MPC8349E processor. U-Boot support +for this board is heavily based on the existing U-Boot support for +Freescale MPC8349 reference boards. + +Support has been primarily tested on the SBC8349 version of the board, +although earlier versions were also tested on the SBC8347. The primary +difference in the two is the level of PCI functionality. + + http://www.windriver.com/products/OCD/SBC8347E_49E/ + + +Flash Details: +============== + +The flash type is intel 28F640Jx (4096x16) [one device]. Base address +is 0xFF80_0000 which is also where the Hardware Reset Configuration +Word (HRCW) is stored. Caution should be used to not overwrite the +HRCW, or "CF RCW" with a Wind River ICE will be required to restore +the HRCW and allow the board to enter background mode for further +steps in the flash process. + + +Restoring a corrupted or missing flash image: +============================================= + +Details for storing U-boot to flash using a Wind River ICE can be found +on page 19 of the board manual (request ERG-00328-001). The following +is a summary of that information: + + - Connect ICE and establish connection to it from WorkBench/OCD. + - Ensure you have background mode (BKM) in the OCD terminal window. + - Select the appropriate flash type (listed above) + - Prepare a u-boot image by using the Wind River Convert utility; + by using "Convert and Add file" on the ELF file from your build. + Convert from FFF0_0000 to FFFF_FFFF (or to FFF3_FFFF if you are + trying to preserve your old environment settings). + - Set the start address of the erase/flash process to FFF0_0000 + - Set the target RAM required to 64kB. + - Select sectors for erasing (see note on enviroment below) + - Select Erase and Reprogram. + +Note that some versions of the register files used with Workbench +would zero some TSEC registers, which inhibits ethernet operation +by u-boot when this register file is played to the target. Using +"INN" in the OCD terminal window instead of "IN" before the "GO" +will not play the register file, and allow u-boot to use the TSEC +interface while executed from the ICE "GO" command. + +Alternatively, you can locate the register file which will be named +WRS_SBC8349_PCT00328001.reg or similar) and "REM" out all the lines +beginning with "SCGA TSEC1" and "SCGA TSEC2". This allows you to +use all the remaining register file content. + +If you wish to preserve your prior U-Boot environment settings, +then convert (and erase to) 0xFFF3FFFF instead of 0xFFFFFFFF. +The size for converting (and erasing) must be at least as large +as u-boot.bin. + + +Updating U-Boot with U-Boot: +============================ + +This procedure is very similar to other boards that have u-boot installed. +Assuming that the network has been configured, and that the new u-boot.bin +has been copied to the TFTP server, the commands are: + + tftp 200000 u-boot.bin + protect off all + erase fff00000 fff3ffff + cp.b 200000 fff00000 3ffff + protect on all + + +PCI: +==== + +This board and U-Boot have been tested with PCI built in, on a SBC8349 +and confirmed that the "pci" command showed the intel e1000 that was +present in the PCI slot. Note that if a 33MHz 32bit card is inserted +in the slot, then the whole board will clock down to a 33MHz base +clock instead of the default 66MHz. This will change the baud clocks +and mess up your serial console output. If you want to use a 33MHz PCI +card, then you should build a U-Boot with #undef PCI_66M in the +include/configs/sbc8349.h and store this to flash prior to powering down +the board and inserting the 33MHz PCI card. + +By default PCI support is disabled to better support very early +revision MPC834x chips with possible PCI issues. Also PCI support is +untested on the sbc8347 variants at this point in time. + + + Paul Gortmaker, 01/2007 -- cgit From 7a78f148d6a7298e4fface680dc7eacd877b1aba Mon Sep 17 00:00:00 2001 From: Timur Tabi Date: Wed, 31 Jan 2007 15:54:29 -0600 Subject: mpc83xx: Add support for the MPC8349E-mITX-GP Add support for the MPC8349E-mITX-GP, a stripped-down version of the MPC8349E-mITX. Bonus features include support for low-boot (BMS bit in HRCW is 0) for the ITX and a README for the ITX and the ITX-GP. Signed-off-by: Timur Tabi --- doc/README.mpc8349itx | 187 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 187 insertions(+) create mode 100644 doc/README.mpc8349itx (limited to 'doc') diff --git a/doc/README.mpc8349itx b/doc/README.mpc8349itx new file mode 100644 index 0000000000..4ae03ae055 --- /dev/null +++ b/doc/README.mpc8349itx @@ -0,0 +1,187 @@ +Freescale MPC8349E-mITX and MPC8349E-mITX-GP Boards +--------------------------------------------------- + +1. Board Description + + The MPC8349E-mITX and MPC8349E-mITX-GP are reference boards featuring + the Freescale MPC8349E processor in a Mini-ITX form factor. + + The MPC8349E-mITX-GP is an MPC8349E-mITX with the following differences: + + A) One 8MB on-board flash EEPROM chip, instead of two. + B) No SATA controller + C) No Compact Flash slot + D) No Mini-PCI slot + E) No Vitesse 7385 5-port Ethernet switch + F) No 4-port USB Type-A interface + +2. Board Switches and Jumpers + +2.0 Descriptions for all of the board jumpers can be found in the User + Guide. Of particular interest to U-Boot developers is jumper J22: + + Pos. Name Default Description + ----------------------------------------------------------------------- + A LGPL0 ON (0) HRCW source, bit 0 + B LGPL1 ON (0) HRCW source, bit 1 + C LGPL3 ON (0) HRCW source, bit 2 + D LGPL5 OFF (1) PCI_SYNC_OUT frequency + E BOOT1 ON (0) Flash EEPROM boot device + F PCI_M66EN ON (0) PCI 66MHz enable + G I2C-WP ON (0) I2C EEPROM write protection + H F_WP OFF (1) Flash EEPROM write protection + + Jumper J22.E is only for the ITX, and it decides the configuration + of the flash chips. If J22.E is ON (i.e. jumpered), then flash chip + U4 is located at address FE000000 and flash chip U7 is at FE800000. + If J22.E is OFF, then U7 is at FE000000 and U4 is at FE800000. + + For U-Boot development, J22.E can be used to switch back-and-forth + between two U-Boot images. + +3. Memory Map + +3.1. The memory map should look pretty much like this: + + 0x0000_0000 - 0x0FFF_FFFF DDR SDRAM (256 MB) + 0x8000_0000 - 0x9FFF_FFFF PCI1 memory space (512 MB) + 0xA000_0000 - 0xBFFF_FFFF PCI2 memory space (512 MB) + 0xE000_0000 - 0xEFFF_FFFF IMMR (1 MB) + 0xE200_0000 - 0xE2FF_FFFF PCI1 I/O space (16 MB) + 0xE300_0000 - 0xE3FF_FFFF PCI2 I/O space (16 MB) + 0xF000_0000 - 0xF000_FFFF Compact Flash (ITX only) + 0xF001_0000 - 0xF001_FFFF Local bus expansion slot + 0xF800_0000 - 0xF801_FFFF Vitesse 7385 Parallel Interface (ITX only) + 0xFE00_0000 - 0xFE7F_FFFF First 8MB bank of Flash memory + 0xFE80_0000 - 0xFEFF_FFFF Second 8MB bank of Flash memory (ITX only) + +3.2 Flash EEPROM layout. + + On the ITX, jumper J22.E is used to determine which flash chips are + at which address. When J22.E is switched, addresses from FE000000 + to FE7FFFFF are swapped with addresses from FE800000 to FEFFFFFF. + + On the ITX, at the normal boot address (aka HIGHBOOT): + + FE00_0000 HRCW + FE70_0000 Alternative U-Boot image + FE80_0000 Alternative HRCW + FEF0_0000 U-Boot image + FEFF_FFFF End of flash + + On the ITX, at the low boot address (LOWBOOT) + + FE00_0000 HRCW and U-Boot image + FE04_0000 U-Boot environment variables + FE80_0000 Alternative HRCW and U-Boot image + FEFF_FFFF End of flash + + On the ITX-GP, the only option is LOWBOOT and there is only one chip + + FE00_0000 HRCW and U-Boot image + FE04_0000 U-Boot environment variables + F7FF_FFFF End of flash + +4. Definitions + +4.1 Explanation of NEW definitions in: + + include/configs/MPC8349ITX.h + + CONFIG_MPC83XX MPC83xx family + CONFIG_MPC8349 MPC8349 specific + CONFIG_MPC8349ITX MPC8349E-mITX + CONFIG_MPC8349ITXGP MPC8349E-mITX-GP + +5. Compilation + + Assuming you're using BASH shell: + + export CROSS_COMPILE=your-cross-compile-prefix + cd u-boot + make distclean + + make MPC8349ITX_config + or: + make MPC8349ITXGP_config + or: + make MPC8349ITX_LOWBOOT_config + + make + +6. Downloading and Flashing Images + +6.1 Download via tftp: + + tftp $loadaddr + + where "" is the path and filename, on the TFTP server, of + the U-Boot image. + +6.1 Reflash U-Boot Image using U-Boot + + setenv uboot + run tftpflash + + where "" is the path and filename, on the TFTP server, of + the U-Boot image. + +6.2 Using the HRCW to switch between two different U-Boot images on the ITX + + Because the ITX has 16MB of flash, it is possible to keep two U-Boot + images in flash, and use the HRCW to specify which one is to be used + when the board boots. This trick is especially effective with a + hardware debugger that can override the HRCW, such as the BDI-2000. + + When the BMS bit in the HRCW is 0, the ITX will boot the U-Boot image + at address FE000000. When the BMS bit is 1, the ITX will boot the + image at address FEF00000. + + Therefore, just put a U-Boot image at both FE000000 and FEF00000 and + change the BMS bit whenever you want to boot the other image. + + Step-by-step instructions: + + 1) Build an ITX image to be loaded at FEF00000 + + make distclean + make MPC8349ITX_config + make + + 2) Take the u-boot.bin image and flash it at FEF00000. + + tftp $loadaddr u-boot.bin + protect off all + erase FEF00000 +$filesize + cp.b $loadaddr FEF00000 $filesize + + 3) Build an ITX image to be loaded at FE000000 + + make distclean + make MPC8349ITX_LOWBOOT_config + make + + 4) Take the u-boot.bin image and flash it at FE000000. + + tftp $loadaddr u-boot.bin + protect off FE000000 +$filesize + erase FE000000 +$filesize + cp.b $loadaddr FE000000 $filesize + + The HRCW in flash is currently set to boot the image at FE000000. + + If you have a hardware debugger, configure it to set the HRCW to + B460A000 04040000 if you want to boot the image at FEF00000, or set + it to B060A000 04040000 if you want to boot the image at FE000000. + + To change the HRCW in flash to boot the image at FEF00000, use these + U-Boot commands: + + cp.b FE000000 1000 10000 ; copy 1st flash sector to 1000 + mw.b 1020 b4 8 ; modify BMS bit + protect off FE000000 +10000 + erase FE000000 +10000 + cp.b 1000 FE000000 10000 + +7. Notes + 1) The console baudrate for MPC8349EITX is 115200bps. -- cgit From 647d3c3eed0da1d1505eecabe0b0fab96f956e68 Mon Sep 17 00:00:00 2001 From: Wolfgang Denk Date: Sun, 4 Mar 2007 01:36:05 +0100 Subject: Some code cleanup. --- doc/README.mpc7448hpc2 | 25 ++++++++++++------------- 1 file changed, 12 insertions(+), 13 deletions(-) (limited to 'doc') diff --git a/doc/README.mpc7448hpc2 b/doc/README.mpc7448hpc2 index 0e40e39269..8659e83673 100644 --- a/doc/README.mpc7448hpc2 +++ b/doc/README.mpc7448hpc2 @@ -92,7 +92,7 @@ SW2[1-6]: CPU core frequency CPU Core Frequency (MHz) Bus Frequency 123456 100 133 167 200 Ratio - + ------ SW2=101100 500 667 833 1000 5x SW2=100100 550 733 917 1100 5.5x @@ -109,43 +109,43 @@ hardware specifications for more information. SW2[7-8]: Bus Protocol and CPU Reset Option - 7 + 7 - SW2=0 System bus uses MPX bus protocol SW2=1 System bus uses 60x bus protocol - 8 + 8 - SW2=0 TSI108 can cause CPU reset SW2=1 TSI108 can not cause CPU reset SW3[1-8] system options - 123 + 123 --- SW3=xxx Connected to GPIO[0:2] on TSI108 - 4 + 4 - SW3=0 CPU boots from low half of flash SW3=1 CPU boots from high half of flash - 5 + 5 - SW3=0 SATA and slot2 connected to PCI bus SW3=1 Only slot1 connected to PCI bus - 6 + 6 - SW3=0 USB connected to PCI bus SW3=1 USB disconnected from PCI bus - 7 + 7 - SW3=0 Flash is write protected SW3=1 Flash is NOT write protected - 8 + 8 - SW3=0 CPU will boot from flash SW3=1 CPU will boot from PromJet @@ -166,20 +166,19 @@ SW4[4-6]: DDR2 SDRAM frequency Bus Frequency (MHz) --- SW4=000 external clock - SW4=011 system clock + SW4=011 system clock SW4=100 133 SW4=101 166 SW4=110 200 others reserved SW4[7-8]: PCI/PCI-X frequency control - 7 + 7 - SW4=0 PCI/PCI-X bus operates normally SW4=1 PCI bus forced to PCI-33 mode - 8 + 8 - SW4=0 PCI-X mode at 133 MHz allowed SW4=1 PCI-X mode limited to 100 MHz - -- cgit From eb92f613556800f7483666db09d9a237ad911d4a Mon Sep 17 00:00:00 2001 From: Wolfgang Denk Date: Thu, 8 Mar 2007 22:52:51 +0100 Subject: Minor cleanup. --- doc/README.mpc832xemds | 1 - 1 file changed, 1 deletion(-) (limited to 'doc') diff --git a/doc/README.mpc832xemds b/doc/README.mpc832xemds index 4cfc0fb752..b63cc7912e 100644 --- a/doc/README.mpc832xemds +++ b/doc/README.mpc832xemds @@ -126,4 +126,3 @@ Maybe 3ffff will work too, that corresponds to the erased sectors. 6. Notes 1) The console baudrate for MPC832XEMDS is 115200bps. - -- cgit From 443feb740584e406efa203af909fe2926608e8d5 Mon Sep 17 00:00:00 2001 From: Igor Marnat Date: Wed, 21 Mar 2007 09:55:01 +0300 Subject: Update usage of 'nc' in README.NetConsole Added information about usage of NetConsole on systems where the -l and -p switches are mutually exclusive. Signed-off-by: Igor Marnat Signed-off-by: Ben Warren --- doc/README.NetConsole | 5 +++++ 1 file changed, 5 insertions(+) (limited to 'doc') diff --git a/doc/README.NetConsole b/doc/README.NetConsole index cc35a0a8ff..fea8e33646 100644 --- a/doc/README.NetConsole +++ b/doc/README.NetConsole @@ -38,6 +38,11 @@ The script expects exactly one argument, which is interpreted as the target IP address (or host name, assuming DNS is working). The script can be interrupted by pressing ^T (CTRL-T). +Be aware that in some distributives (Fedora Core 5 at least) +usage of nc has been changed and -l and -p options are considered +as mutually exclusive. If nc complains about options provided, +you can just remove the -p option from the script. + It turns out that 'netcat' cannot be used to listen to broadcast packets. We developed our own tool 'ncb' (see tools directory) that listens to broadcast packets on a given port and dumps them to the -- cgit From 3d98b85800c80dc68227c8f10bf5c93456d6d054 Mon Sep 17 00:00:00 2001 From: Haiying Wang Date: Mon, 22 Jan 2007 12:37:30 -0600 Subject: Add PIXIS FPGA support for MPC8641HPCN board. Move the 8641HPCN's PIXIS code to the new directory board/freescale/common/ as it will be shared by future boards not in the same processor family. Write a "pixis_reset" command that utilizes the FPGA reset sequencer to support alternate soft-reset options such as using the "alternate" flash bank, enabling the watch dog, or choosing different CPU frequencies. Add documentation for the pixis_reset to README.mpc8641hpcn. Signed-off-by: Haiying Wang Signed-off-by: Jon Loeliger --- doc/README.mpc8641hpcn | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) (limited to 'doc') diff --git a/doc/README.mpc8641hpcn b/doc/README.mpc8641hpcn index 4a650ce43c..3b88f8bc72 100644 --- a/doc/README.mpc8641hpcn +++ b/doc/README.mpc8641hpcn @@ -121,3 +121,37 @@ To Flash U-boot into the alternative bank (0xFF800000 - 0xFFBFFFFF): 0xe300_0000 0xe3ff_ffff PCI2/PEX2 IO 16M 0xfe00_0000 0xfeff_ffff Flash(alternate)16M 0xff00_0000 0xffff_ffff Flash(boot bank)16M + +5. pixis_reset command +-------------------- +A new command, "pixis_reset", is introduced to reset mpc8641hpcn board +using the FPGA sequencer. When the board restarts, it has the option +of using either the current or alternate flash bank as the boot +image, with or without the watchdog timer enabled, and finally with +or without frequency changes. + +Usage is; + + pixis_reset + pixis_reset altbank + pixis_reset altbank wd + pixis_reset altbank cf + pixis_reset cf + +Examples; + + /* reset to current bank, like "reset" command */ + pixis_reset + + /* reset board but use the to alternate flash bank */ + pixis_reset altbank + + /* reset board, use alternate flash bank with watchdog timer enabled*/ + pixis_reset altbank wd + + /* reset board to alternate bank with frequency changed. + * 40 is SYSCLK, 2.5 is COREPLL ratio, 10 is MPXPLL ratio + */ + pixis-reset altbank cf 40 2.5 10 + +Valid clock choices are in the 8641 Reference Manuals. -- cgit From 3747a3f010b2b1442dec3e871c69788b6017aaae Mon Sep 17 00:00:00 2001 From: Domen Puncer Date: Wed, 18 Apr 2007 12:11:05 +0200 Subject: [PATCH] icecube/lite5200b: document wakeup from low-power support Signed-off-by: Domen Puncer --- doc/README.Lite5200B_low_power | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) create mode 100644 doc/README.Lite5200B_low_power (limited to 'doc') diff --git a/doc/README.Lite5200B_low_power b/doc/README.Lite5200B_low_power new file mode 100644 index 0000000000..5b04fbba72 --- /dev/null +++ b/doc/README.Lite5200B_low_power @@ -0,0 +1,22 @@ +Lite5200B wakeup from low-power mode (CONFIG_LITE5200B_PM) +---------------------------------------------------------- + +Low-power mode as described in Lite5200B User's Manual, means that +with support of MC68HLC908QT1 microcontroller (refered to as QT), +everything but the SDRAM can be powered down. This brings +maximum power saving, while one can still restore previous state +quickly. + +Quick overview where U-Boot comes into the picture: +- OS saves device states +- OS saves wakeup handler address to physical 0x0, puts SDRAM into + self-refresh and signals to QT, it should power down the board +- / board is sleeping here / +- someone presses SW4 (connected to QT) +- U-Boot checks PSC2_4 pin, if QT drives it down, then we woke up, + so get SDRAM out of self-refresh and transfer control to OS + wakeup handler +- OS restores device states + +This was tested on Linux with USB and Ethernet in use. Adding +support for other devices is an OS issue. -- cgit