/*
* Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "cpu.h"
int get_num_cpus(void)
{
struct apb_misc_gp_ctlr *gp;
uint rev;
gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE;
rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT;
switch (rev) {
case CHIPID_TEGRA20:
return 2;
break;
case CHIPID_TEGRA30:
case CHIPID_TEGRA114:
default:
return 4;
break;
}
}
/*
* Timing tables for each SOC for all four oscillator options.
*/
struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
/*
* T20: 1 GHz
*
* Register Field Bits Width
* ------------------------------
* PLLX_BASE p 22:20 3
* PLLX_BASE n 17: 8 10
* PLLX_BASE m 4: 0 5
* PLLX_MISC cpcon 11: 8 4
*/
{
{ .n = 1000, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
{ .n = 625, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
{ .n = 1000, .m = 12, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
{ .n = 1000, .m = 26, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
},
/*
* T25: 1.2 GHz
*
* Register Field Bits Width
* ------------------------------
* PLLX_BASE p 22:20 3
* PLLX_BASE n 17: 8 10
* PLLX_BASE m 4: 0 5
* PLLX_MISC cpcon 11: 8 4
*/
{
{ .n = 923, .m = 10, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
{ .n = 750, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
{ .n = 600, .m = 6, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
{ .n = 600, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
},
/*
* T30: 1.4 GHz
*
* Register Field Bits Width
* ------------------------------
* PLLX_BASE p 22:20 3
* PLLX_BASE n 17: 8 10
* PLLX_BASE m 4: 0 5
* PLLX_MISC cpcon 11: 8 4
*/
{
{ .n = 862, .m = 8, .p = 0, .cpcon = 8 }, /* OSC: 13.0 MHz */
{ .n = 583, .m = 8, .p = 0, .cpcon = 4 }, /* OSC: 19.2 MHz */
{ .n = 700, .m = 6, .p = 0, .cpcon = 8 }, /* OSC: 12.0 MHz */
{ .n = 700, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 26.0 MHz */
},
/*
* T114: 700 MHz
*
* Register Field Bits Width
* ------------------------------
* PLLX_BASE p 23:20 4
* PLLX_BASE n 15: 8 8
* PLLX_BASE m 7: 0 8
*/
{
{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
{ .n = 73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
},
};
void adjust_pllp_out_freqs(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct clk_pll *pll = &clkrst->crc_pll[CLOCK_ID_PERIPH];
u32 reg;
/* Set T30 PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
reg = readl(&pll->pll_out[0]); /* OUTA, contains OUT2 / OUT1 */
reg |= (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) | PLLP_OUT2_OVR
| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) | PLLP_OUT1_OVR;
writel(reg, &pll->pll_out[0]);
reg = readl(&pll->pll_out[1]); /* OUTB, contains OUT4 / OUT3 */
reg |= (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) | PLLP_OUT4_OVR
| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) | PLLP_OUT3_OVR;
writel(reg, &pll->pll_out[1]);
}
int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
u32 divp, u32 cpcon)
{
int chip = tegra_get_chip();
u32 reg;
/* If PLLX is already enabled, just return */
if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
debug("pllx_set_rate: PLLX already enabled, returning\n");
return 0;
}
debug(" pllx_set_rate entry\n");
/* Set BYPASS, m, n and p to PLLX_BASE */
reg = PLL_BYPASS_MASK | (divm << PLL_DIVM_SHIFT);
reg |= ((divn << PLL_DIVN_SHIFT) | (divp << PLL_DIVP_SHIFT));
writel(reg, &pll->pll_base);
/* Set cpcon to PLLX_MISC */
if (chip == CHIPID_TEGRA20 || chip == CHIPID_TEGRA30)
reg = (cpcon << PLL_CPCON_SHIFT);
else
reg = 0;
/* Set dccon to PLLX_MISC if freq > 600MHz */
if (divn > 600)
reg |= (1 << PLL_DCCON_SHIFT);
writel(reg, &pll->pll_misc);
/* Enable PLLX */
reg = readl(&pll->pll_base);
reg |= PLL_ENABLE_MASK;
/* Disable BYPASS */
reg &= ~PLL_BYPASS_MASK;
writel(reg, &pll->pll_base);
/* Set lock_enable to PLLX_MISC */
reg = readl(&pll->pll_misc);
reg |= PLL_LOCK_ENABLE_MASK;
writel(reg, &pll->pll_misc);
return 0;
}
void init_pllx(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
int soc_type, sku_info, chip_sku;
enum clock_osc_freq osc;
struct clk_pll_table *sel;
debug("init_pllx entry\n");
/* get SOC (chip) type */
soc_type = tegra_get_chip();
debug(" init_pllx: SoC = 0x%02X\n", soc_type);
/* get SKU info */
sku_info = tegra_get_sku_info();
debug(" init_pllx: SKU info byte = 0x%02X\n", sku_info);
/* get chip SKU, combo of the above info */
chip_sku = tegra_get_chip_sku();
debug(" init_pllx: Chip SKU = %d\n", chip_sku);
/* get osc freq */
osc = clock_get_osc_freq();
debug(" init_pllx: osc = %d\n", osc);
/* set pllx */
sel = &tegra_pll_x_table[chip_sku][osc];
pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
/* adjust PLLP_out1-4 on T3x/T114 */
if (soc_type >= CHIPID_TEGRA30) {
debug(" init_pllx: adjusting PLLP out freqs\n");
adjust_pllp_out_freqs();
}
}
void enable_cpu_clock(int enable)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 clk;
/*
* NOTE:
* Regardless of whether the request is to enable or disable the CPU
* clock, every processor in the CPU complex except the master (CPU 0)
* will have it's clock stopped because the AVP only talks to the
* master.
*/
if (enable) {
/* Initialize PLLX */
init_pllx();
/* Wait until all clocks are stable */
udelay(PLL_STABILIZATION_DELAY);
writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
}
/*
* Read the register containing the individual CPU clock enables and
* always stop the clocks to CPUs > 0.
*/
clk = readl(&clkrst->crc_clk_cpu_cmplx);
clk |= 1 << CPU1_CLK_STP_SHIFT;
if (get_num_cpus() == 4)
clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT);
/* Stop/Unstop the CPU clock */
clk &= ~CPU0_CLK_STP_MASK;
clk |= !enable << CPU0_CLK_STP_SHIFT;
writel(clk, &clkrst->crc_clk_cpu_cmplx);
clock_enable(PERIPH_ID_CPU);
}
static int is_cpu_powered(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
}
static void remove_cpu_io_clamps(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
/* Remove the clamps on the CPU I/O signals */
reg = readl(&pmc->pmc_remove_clamping);
reg |= CPU_CLMP;
writel(reg, &pmc->pmc_remove_clamping);
/* Give I/O signals time to stabilize */
udelay(IO_STABILIZATION_DELAY);
}
void powerup_cpu(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
int timeout = IO_STABILIZATION_DELAY;
if (!is_cpu_powered()) {
/* Toggle the CPU power state (OFF -> ON) */
reg = readl(&pmc->pmc_pwrgate_toggle);
reg &= PARTID_CP;
reg |= START_CP;
writel(reg, &pmc->pmc_pwrgate_toggle);
/* Wait for the power to come up */
while (!is_cpu_powered()) {
if (timeout-- == 0)
printf("CPU failed to power up!\n");
else
udelay(10);
}
/*
* Remove the I/O clamps from CPU power partition.
* Recommended only on a Warm boot, if the CPU partition gets
* power gated. Shouldn't cause any harm when called after a
* cold boot according to HW, probably just redundant.
*/
remove_cpu_io_clamps();
}
}
void reset_A9_cpu(int reset)
{
/*
* NOTE: Regardless of whether the request is to hold the CPU in reset
* or take it out of reset, every processor in the CPU complex
* except the master (CPU 0) will be held in reset because the
* AVP only talks to the master. The AVP does not know that there
* are multiple processors in the CPU complex.
*/
int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
int num_cpus = get_num_cpus();
int cpu;
debug("reset_a9_cpu entry\n");
/* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
for (cpu = 1; cpu < num_cpus; cpu++)
reset_cmplx_set_enable(cpu, mask, 1);
reset_cmplx_set_enable(0, mask, reset);
/* Enable/Disable master CPU reset */
reset_set_enable(PERIPH_ID_CPU, reset);
}
void clock_enable_coresight(int enable)
{
u32 rst, src = 2;
int soc_type;
debug("clock_enable_coresight entry\n");
clock_set_enable(PERIPH_ID_CORESIGHT, enable);
reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
if (enable) {
/*
* Put CoreSight on PLLP_OUT0 and divide it down as per
* PLLP base frequency based on SoC type (T20/T30/T114).
* Clock divider request would setup CSITE clock as 144MHz
* for PLLP base 216MHz and 204MHz for PLLP base 408MHz
*/
soc_type = tegra_get_chip();
if (soc_type == CHIPID_TEGRA30 || soc_type == CHIPID_TEGRA114)
src = CLK_DIVIDER(NVBL_PLLP_KHZ, 204000);
else if (soc_type == CHIPID_TEGRA20)
src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000);
else
printf("%s: Unknown SoC type %X!\n",
__func__, soc_type);
clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
/* Unlock the CPU CoreSight interfaces */
rst = CORESIGHT_UNLOCK;
writel(rst, CSITE_CPU_DBG0_LAR);
writel(rst, CSITE_CPU_DBG1_LAR);
if (get_num_cpus() == 4) {
writel(rst, CSITE_CPU_DBG2_LAR);
writel(rst, CSITE_CPU_DBG3_LAR);
}
}
}
void halt_avp(void)
{
for (;;) {
writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \
| HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)),
FLOW_CTLR_HALT_COP_EVENTS);
}
}