/* * Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include "cpu.h" enum tegra_family_t { TEGRA_FAMILY_T2x, TEGRA_FAMILY_T3x, }; enum tegra_family_t get_family(void) { u32 reg, chip_id; reg = readl(NV_PA_APB_MISC_BASE + GP_HIDREV); chip_id = reg >> 8; chip_id &= 0xff; debug(" tegra_get_family: chip_id = %x\n", chip_id); if (chip_id == 0x30) return TEGRA_FAMILY_T3x; else return TEGRA_FAMILY_T2x; } int get_num_cpus(void) { return get_family() == TEGRA_FAMILY_T3x ? 4 : 2; } /* * Timing tables for each SOC for all four oscillator options. */ struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = { /* T20: 1 GHz */ {{ 1000, 13, 0, 12}, /* OSC 13M */ { 625, 12, 0, 8}, /* OSC 19.2M */ { 1000, 12, 0, 12}, /* OSC 12M */ { 1000, 26, 0, 12}, /* OSC 26M */ }, /* T25: 1.2 GHz */ {{ 923, 10, 0, 12}, { 750, 12, 0, 8}, { 600, 6, 0, 12}, { 600, 13, 0, 12}, }, /* T30: 1.4 GHz */ {{ 862, 8, 0, 8}, { 583, 8, 0, 4}, { 700, 6, 0, 8}, { 700, 13, 0, 8}, }, }; void adjust_pllp_out_freqs(void) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; struct clk_pll *pll = &clkrst->crc_pll[CLOCK_ID_PERIPH]; u32 reg; /* Set T30 PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */ reg = readl(&pll->pll_out[0]); /* OUTA, contains OUT2 / OUT1 */ reg |= (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) | PLLP_OUT2_OVR | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) | PLLP_OUT1_OVR; writel(reg, &pll->pll_out[0]); reg = readl(&pll->pll_out[1]); /* OUTB, contains OUT4 / OUT3 */ reg |= (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) | PLLP_OUT4_OVR | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) | PLLP_OUT3_OVR; writel(reg, &pll->pll_out[1]); } int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm, u32 divp, u32 cpcon) { u32 reg; /* If PLLX is already enabled, just return */ if (readl(&pll->pll_base) & PLL_ENABLE_MASK) { debug("pllx_set_rate: PLLX already enabled, returning\n"); return 0; } debug(" pllx_set_rate entry\n"); /* Set BYPASS, m, n and p to PLLX_BASE */ reg = PLL_BYPASS_MASK | (divm << PLL_DIVM_SHIFT); reg |= ((divn << PLL_DIVN_SHIFT) | (divp << PLL_DIVP_SHIFT)); writel(reg, &pll->pll_base); /* Set cpcon to PLLX_MISC */ reg = (cpcon << PLL_CPCON_SHIFT); /* Set dccon to PLLX_MISC if freq > 600MHz */ if (divn > 600) reg |= (1 << PLL_DCCON_SHIFT); writel(reg, &pll->pll_misc); /* Enable PLLX */ reg = readl(&pll->pll_base); reg |= PLL_ENABLE_MASK; /* Disable BYPASS */ reg &= ~PLL_BYPASS_MASK; writel(reg, &pll->pll_base); /* Set lock_enable to PLLX_MISC */ reg = readl(&pll->pll_misc); reg |= PLL_LOCK_ENABLE_MASK; writel(reg, &pll->pll_misc); return 0; } void init_pllx(void) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX]; int chip_type; enum clock_osc_freq osc; struct clk_pll_table *sel; debug("init_pllx entry\n"); /* get chip type */ chip_type = tegra_get_chip_type(); debug(" init_pllx: chip_type = %d\n", chip_type); /* get osc freq */ osc = clock_get_osc_freq(); debug(" init_pllx: osc = %d\n", osc); /* set pllx */ sel = &tegra_pll_x_table[chip_type][osc]; pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon); /* adjust PLLP_out1-4 on T30 */ if (chip_type == TEGRA_SOC_T30) { debug(" init_pllx: adjusting PLLP out freqs\n"); adjust_pllp_out_freqs(); } } void enable_cpu_clock(int enable) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 clk; /* * NOTE: * Regardless of whether the request is to enable or disable the CPU * clock, every processor in the CPU complex except the master (CPU 0) * will have it's clock stopped because the AVP only talks to the * master. */ if (enable) { /* Initialize PLLX */ init_pllx(); /* Wait until all clocks are stable */ udelay(PLL_STABILIZATION_DELAY); writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol); writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div); } /* * Read the register containing the individual CPU clock enables and * always stop the clocks to CPUs > 0. */ clk = readl(&clkrst->crc_clk_cpu_cmplx); clk |= 1 << CPU1_CLK_STP_SHIFT; #if defined(CONFIG_TEGRA30) clk |= 1 << CPU2_CLK_STP_SHIFT; clk |= 1 << CPU3_CLK_STP_SHIFT; #endif /* Stop/Unstop the CPU clock */ clk &= ~CPU0_CLK_STP_MASK; clk |= !enable << CPU0_CLK_STP_SHIFT; writel(clk, &clkrst->crc_clk_cpu_cmplx); clock_enable(PERIPH_ID_CPU); } static int is_cpu_powered(void) { struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0; } static void remove_cpu_io_clamps(void) { struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; u32 reg; /* Remove the clamps on the CPU I/O signals */ reg = readl(&pmc->pmc_remove_clamping); reg |= CPU_CLMP; writel(reg, &pmc->pmc_remove_clamping); /* Give I/O signals time to stabilize */ udelay(IO_STABILIZATION_DELAY); } void powerup_cpu(void) { struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; u32 reg; int timeout = IO_STABILIZATION_DELAY; if (!is_cpu_powered()) { /* Toggle the CPU power state (OFF -> ON) */ reg = readl(&pmc->pmc_pwrgate_toggle); reg &= PARTID_CP; reg |= START_CP; writel(reg, &pmc->pmc_pwrgate_toggle); /* Wait for the power to come up */ while (!is_cpu_powered()) { if (timeout-- == 0) printf("CPU failed to power up!\n"); else udelay(10); } /* * Remove the I/O clamps from CPU power partition. * Recommended only on a Warm boot, if the CPU partition gets * power gated. Shouldn't cause any harm when called after a * cold boot according to HW, probably just redundant. */ remove_cpu_io_clamps(); } } void reset_A9_cpu(int reset) { /* * NOTE: Regardless of whether the request is to hold the CPU in reset * or take it out of reset, every processor in the CPU complex * except the master (CPU 0) will be held in reset because the * AVP only talks to the master. The AVP does not know that there * are multiple processors in the CPU complex. */ int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug; int num_cpus = get_num_cpus(); int cpu; debug("reset_a9_cpu entry\n"); /* Hold CPUs 1 onwards in reset, and CPU 0 if asked */ for (cpu = 1; cpu < num_cpus; cpu++) reset_cmplx_set_enable(cpu, mask, 1); reset_cmplx_set_enable(0, mask, reset); /* Enable/Disable master CPU reset */ reset_set_enable(PERIPH_ID_CPU, reset); } void clock_enable_coresight(int enable) { u32 rst, src; debug("clock_enable_coresight entry\n"); clock_set_enable(PERIPH_ID_CORESIGHT, enable); reset_set_enable(PERIPH_ID_CORESIGHT, !enable); if (enable) { /* * Put CoreSight on PLLP_OUT0 (216 MHz) and divide it down by * 1.5, giving an effective frequency of 144MHz. * Set PLLP_OUT0 [bits31:30 = 00], and use a 7.1 divisor * (bits 7:0), so 00000001b == 1.5 (n+1 + .5) * * Clock divider request for 204MHz would setup CSITE clock as * 144MHz for PLLP base 216MHz and 204MHz for PLLP base 408MHz */ if (tegra_get_chip_type() == TEGRA_SOC_T30) src = CLK_DIVIDER(NVBL_PLLP_KHZ, 204000); else src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000); clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src); /* Unlock the CPU CoreSight interfaces */ rst = CORESIGHT_UNLOCK; writel(rst, CSITE_CPU_DBG0_LAR); writel(rst, CSITE_CPU_DBG1_LAR); #if defined(CONFIG_TEGRA30) writel(rst, CSITE_CPU_DBG2_LAR); writel(rst, CSITE_CPU_DBG3_LAR); #endif } } void halt_avp(void) { for (;;) { writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \ | HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)), FLOW_CTLR_HALT_COP_EVENTS); } }