/* * Copyright (C) 2015 Freescale Semiconductor, Inc. * * Author: * Peng Fan <Peng.Fan@freescale.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <div64.h> #include <asm/io.h> #include <linux/errno.h> #include <asm/arch/imx-regs.h> #include <asm/arch/crm_regs.h> #include <asm/arch/clock.h> #include <asm/arch/sys_proto.h> struct mxc_ccm_anatop_reg *ccm_anatop = (struct mxc_ccm_anatop_reg *) ANATOP_BASE_ADDR; struct mxc_ccm_reg *ccm_reg = (struct mxc_ccm_reg *)CCM_BASE_ADDR; #ifdef CONFIG_FSL_ESDHC DECLARE_GLOBAL_DATA_PTR; #endif int get_clocks(void) { #ifdef CONFIG_FSL_ESDHC #if CONFIG_SYS_FSL_ESDHC_ADDR == USDHC2_BASE_ADDR gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK); #elif CONFIG_SYS_FSL_ESDHC_ADDR == USDHC3_BASE_ADDR gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK); #else gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK); #endif #endif return 0; } u32 get_ahb_clk(void) { return get_root_clk(AHB_CLK_ROOT); } static u32 get_ipg_clk(void) { /* * The AHB and IPG are fixed at 2:1 ratio, and synchronized to * each other. */ return get_ahb_clk() / 2; } u32 imx_get_uartclk(void) { return get_root_clk(UART1_CLK_ROOT); } u32 imx_get_fecclk(void) { return get_root_clk(ENET_AXI_CLK_ROOT); } #ifdef CONFIG_MXC_OCOTP void enable_ocotp_clk(unsigned char enable) { clock_enable(CCGR_OCOTP, enable); } void enable_thermal_clk(void) { enable_ocotp_clk(1); } #endif void enable_usboh3_clk(unsigned char enable) { u32 target; if (enable) { /* disable the clock gate first */ clock_enable(CCGR_USB_HSIC, 0); /* 120Mhz */ target = CLK_ROOT_ON | USB_HSIC_CLK_ROOT_FROM_PLL_SYS_MAIN_480M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(USB_HSIC_CLK_ROOT, target); /* enable the clock gate */ clock_enable(CCGR_USB_CTRL, 1); clock_enable(CCGR_USB_HSIC, 1); clock_enable(CCGR_USB_PHY1, 1); clock_enable(CCGR_USB_PHY2, 1); } else { clock_enable(CCGR_USB_CTRL, 0); clock_enable(CCGR_USB_HSIC, 0); clock_enable(CCGR_USB_PHY1, 0); clock_enable(CCGR_USB_PHY2, 0); } } static u32 decode_pll(enum pll_clocks pll, u32 infreq) { u32 reg, div_sel; u32 num, denom; /* * Alought there are four choices for the bypass src, * we choose OSC_24M which is the default set in ROM. */ switch (pll) { case PLL_CORE: reg = readl(&ccm_anatop->pll_arm); if (reg & CCM_ANALOG_PLL_ARM_POWERDOWN_MASK) return 0; if (reg & CCM_ANALOG_PLL_ARM_BYPASS_MASK) return MXC_HCLK; div_sel = (reg & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT; return (infreq * div_sel) / 2; case PLL_SYS: reg = readl(&ccm_anatop->pll_480); if (reg & CCM_ANALOG_PLL_480_POWERDOWN_MASK) return 0; if (reg & CCM_ANALOG_PLL_480_BYPASS_MASK) return MXC_HCLK; if (((reg & CCM_ANALOG_PLL_480_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_480_DIV_SELECT_SHIFT) == 0) return 480000000u; else return 528000000u; case PLL_ENET: reg = readl(&ccm_anatop->pll_enet); if (reg & CCM_ANALOG_PLL_ENET_POWERDOWN_MASK) return 0; if (reg & CCM_ANALOG_PLL_ENET_BYPASS_MASK) return MXC_HCLK; return 1000000000u; case PLL_DDR: reg = readl(&ccm_anatop->pll_ddr); if (reg & CCM_ANALOG_PLL_DDR_POWERDOWN_MASK) return 0; num = ccm_anatop->pll_ddr_num; denom = ccm_anatop->pll_ddr_denom; if (reg & CCM_ANALOG_PLL_DDR_BYPASS_MASK) return MXC_HCLK; div_sel = (reg & CCM_ANALOG_PLL_DDR_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_DDR_DIV_SELECT_SHIFT; return infreq * (div_sel + num / denom); case PLL_USB: return 480000000u; default: printf("Unsupported pll clocks %d\n", pll); break; } return 0; } static u32 mxc_get_pll_sys_derive(int derive) { u32 freq, div, frac; u32 reg; div = 1; reg = readl(&ccm_anatop->pll_480); freq = decode_pll(PLL_SYS, MXC_HCLK); switch (derive) { case PLL_SYS_MAIN_480M_CLK: if (reg & CCM_ANALOG_PLL_480_MAIN_DIV1_CLKGATE_MASK) return 0; else return freq; case PLL_SYS_MAIN_240M_CLK: if (reg & CCM_ANALOG_PLL_480_MAIN_DIV2_CLKGATE_MASK) return 0; else return freq / 2; case PLL_SYS_MAIN_120M_CLK: if (reg & CCM_ANALOG_PLL_480_MAIN_DIV4_CLKGATE_MASK) return 0; else return freq / 4; case PLL_SYS_PFD0_392M_CLK: reg = readl(&ccm_anatop->pfd_480a); if (reg & CCM_ANALOG_PFD_480A_PFD0_DIV1_CLKGATE_MASK) return 0; frac = (reg & CCM_ANALOG_PFD_480A_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_480A_PFD0_FRAC_SHIFT; break; case PLL_SYS_PFD0_196M_CLK: if (reg & CCM_ANALOG_PLL_480_PFD0_DIV2_CLKGATE_MASK) return 0; reg = readl(&ccm_anatop->pfd_480a); frac = (reg & CCM_ANALOG_PFD_480A_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_480A_PFD0_FRAC_SHIFT; div = 2; break; case PLL_SYS_PFD1_332M_CLK: reg = readl(&ccm_anatop->pfd_480a); if (reg & CCM_ANALOG_PFD_480A_PFD1_DIV1_CLKGATE_MASK) return 0; frac = (reg & CCM_ANALOG_PFD_480A_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_480A_PFD1_FRAC_SHIFT; break; case PLL_SYS_PFD1_166M_CLK: if (reg & CCM_ANALOG_PLL_480_PFD1_DIV2_CLKGATE_MASK) return 0; reg = readl(&ccm_anatop->pfd_480a); frac = (reg & CCM_ANALOG_PFD_480A_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_480A_PFD1_FRAC_SHIFT; div = 2; break; case PLL_SYS_PFD2_270M_CLK: reg = readl(&ccm_anatop->pfd_480a); if (reg & CCM_ANALOG_PFD_480A_PFD2_DIV1_CLKGATE_MASK) return 0; frac = (reg & CCM_ANALOG_PFD_480A_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_480A_PFD2_FRAC_SHIFT; break; case PLL_SYS_PFD2_135M_CLK: if (reg & CCM_ANALOG_PLL_480_PFD2_DIV2_CLKGATE_MASK) return 0; reg = readl(&ccm_anatop->pfd_480a); frac = (reg & CCM_ANALOG_PFD_480A_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_480A_PFD2_FRAC_SHIFT; div = 2; break; case PLL_SYS_PFD3_CLK: reg = readl(&ccm_anatop->pfd_480a); if (reg & CCM_ANALOG_PFD_480A_PFD3_DIV1_CLKGATE_MASK) return 0; frac = (reg & CCM_ANALOG_PFD_480A_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_480A_PFD3_FRAC_SHIFT; break; case PLL_SYS_PFD4_CLK: reg = readl(&ccm_anatop->pfd_480b); if (reg & CCM_ANALOG_PFD_480B_PFD4_DIV1_CLKGATE_MASK) return 0; frac = (reg & CCM_ANALOG_PFD_480B_PFD4_FRAC_MASK) >> CCM_ANALOG_PFD_480B_PFD4_FRAC_SHIFT; break; case PLL_SYS_PFD5_CLK: reg = readl(&ccm_anatop->pfd_480b); if (reg & CCM_ANALOG_PFD_480B_PFD5_DIV1_CLKGATE_MASK) return 0; frac = (reg & CCM_ANALOG_PFD_480B_PFD5_FRAC_MASK) >> CCM_ANALOG_PFD_480B_PFD5_FRAC_SHIFT; break; case PLL_SYS_PFD6_CLK: reg = readl(&ccm_anatop->pfd_480b); if (reg & CCM_ANALOG_PFD_480B_PFD6_DIV1_CLKGATE_MASK) return 0; frac = (reg & CCM_ANALOG_PFD_480B_PFD6_FRAC_MASK) >> CCM_ANALOG_PFD_480B_PFD6_FRAC_SHIFT; break; case PLL_SYS_PFD7_CLK: reg = readl(&ccm_anatop->pfd_480b); if (reg & CCM_ANALOG_PFD_480B_PFD7_DIV1_CLKGATE_MASK) return 0; frac = (reg & CCM_ANALOG_PFD_480B_PFD7_FRAC_MASK) >> CCM_ANALOG_PFD_480B_PFD7_FRAC_SHIFT; break; default: printf("Error derived pll_sys clock %d\n", derive); return 0; } return ((freq / frac) * 18) / div; } static u32 mxc_get_pll_enet_derive(int derive) { u32 freq, reg; freq = decode_pll(PLL_ENET, MXC_HCLK); reg = readl(&ccm_anatop->pll_enet); switch (derive) { case PLL_ENET_MAIN_500M_CLK: if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_500MHZ_MASK) return freq / 2; break; case PLL_ENET_MAIN_250M_CLK: if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_250MHZ_MASK) return freq / 4; break; case PLL_ENET_MAIN_125M_CLK: if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ_MASK) return freq / 8; break; case PLL_ENET_MAIN_100M_CLK: if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_100MHZ_MASK) return freq / 10; break; case PLL_ENET_MAIN_50M_CLK: if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_50MHZ_MASK) return freq / 20; break; case PLL_ENET_MAIN_40M_CLK: if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_40MHZ_MASK) return freq / 25; break; case PLL_ENET_MAIN_25M_CLK: if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_25MHZ_MASK) return freq / 40; break; default: printf("Error derived pll_enet clock %d\n", derive); break; } return 0; } static u32 mxc_get_pll_ddr_derive(int derive) { u32 freq, reg; freq = decode_pll(PLL_DDR, MXC_HCLK); reg = readl(&ccm_anatop->pll_ddr); switch (derive) { case PLL_DRAM_MAIN_1066M_CLK: return freq; case PLL_DRAM_MAIN_533M_CLK: if (reg & CCM_ANALOG_PLL_DDR_DIV2_ENABLE_CLK_MASK) return freq / 2; break; default: printf("Error derived pll_ddr clock %d\n", derive); break; } return 0; } static u32 mxc_get_pll_derive(enum pll_clocks pll, int derive) { switch (pll) { case PLL_SYS: return mxc_get_pll_sys_derive(derive); case PLL_ENET: return mxc_get_pll_enet_derive(derive); case PLL_DDR: return mxc_get_pll_ddr_derive(derive); default: printf("Error pll.\n"); return 0; } } static u32 get_root_src_clk(enum clk_root_src root_src) { switch (root_src) { case OSC_24M_CLK: return 24000000u; case PLL_ARM_MAIN_800M_CLK: return decode_pll(PLL_CORE, MXC_HCLK); case PLL_SYS_MAIN_480M_CLK: case PLL_SYS_MAIN_240M_CLK: case PLL_SYS_MAIN_120M_CLK: case PLL_SYS_PFD0_392M_CLK: case PLL_SYS_PFD0_196M_CLK: case PLL_SYS_PFD1_332M_CLK: case PLL_SYS_PFD1_166M_CLK: case PLL_SYS_PFD2_270M_CLK: case PLL_SYS_PFD2_135M_CLK: case PLL_SYS_PFD3_CLK: case PLL_SYS_PFD4_CLK: case PLL_SYS_PFD5_CLK: case PLL_SYS_PFD6_CLK: case PLL_SYS_PFD7_CLK: return mxc_get_pll_derive(PLL_SYS, root_src); case PLL_ENET_MAIN_500M_CLK: case PLL_ENET_MAIN_250M_CLK: case PLL_ENET_MAIN_125M_CLK: case PLL_ENET_MAIN_100M_CLK: case PLL_ENET_MAIN_50M_CLK: case PLL_ENET_MAIN_40M_CLK: case PLL_ENET_MAIN_25M_CLK: return mxc_get_pll_derive(PLL_ENET, root_src); case PLL_DRAM_MAIN_1066M_CLK: case PLL_DRAM_MAIN_533M_CLK: return mxc_get_pll_derive(PLL_DDR, root_src); case PLL_AUDIO_MAIN_CLK: return decode_pll(PLL_AUDIO, MXC_HCLK); case PLL_VIDEO_MAIN_CLK: return decode_pll(PLL_VIDEO, MXC_HCLK); case PLL_USB_MAIN_480M_CLK: return decode_pll(PLL_USB, MXC_HCLK); case REF_1M_CLK: return 1000000; case OSC_32K_CLK: return MXC_CLK32; case EXT_CLK_1: case EXT_CLK_2: case EXT_CLK_3: case EXT_CLK_4: printf("No EXT CLK supported??\n"); break; }; return 0; } u32 get_root_clk(enum clk_root_index clock_id) { enum clk_root_src root_src; u32 post_podf, pre_podf, auto_podf, root_src_clk; int auto_en; if (clock_root_enabled(clock_id) <= 0) return 0; if (clock_get_prediv(clock_id, &pre_podf) < 0) return 0; if (clock_get_postdiv(clock_id, &post_podf) < 0) return 0; if (clock_get_autopostdiv(clock_id, &auto_podf, &auto_en) < 0) return 0; if (auto_en == 0) auto_podf = 0; if (clock_get_src(clock_id, &root_src) < 0) return 0; root_src_clk = get_root_src_clk(root_src); /* * bypass clk is ignored. */ return root_src_clk / (post_podf + 1) / (pre_podf + 1) / (auto_podf + 1); } static u32 get_ddrc_clk(void) { u32 reg, freq; enum root_post_div post_div; reg = readl(&ccm_reg->root[DRAM_CLK_ROOT].target_root); if (reg & CLK_ROOT_MUX_MASK) /* DRAM_ALT_CLK_ROOT */ freq = get_root_clk(DRAM_ALT_CLK_ROOT); else /* PLL_DRAM_MAIN_1066M_CLK */ freq = mxc_get_pll_derive(PLL_DDR, PLL_DRAM_MAIN_1066M_CLK); post_div = reg & DRAM_CLK_ROOT_POST_DIV_MASK; return freq / (post_div + 1) / 2; } unsigned int mxc_get_clock(enum mxc_clock clk) { switch (clk) { case MXC_ARM_CLK: return get_root_clk(ARM_A7_CLK_ROOT); case MXC_AXI_CLK: return get_root_clk(MAIN_AXI_CLK_ROOT); case MXC_AHB_CLK: return get_root_clk(AHB_CLK_ROOT); case MXC_IPG_CLK: return get_ipg_clk(); case MXC_I2C_CLK: return get_root_clk(I2C1_CLK_ROOT); case MXC_UART_CLK: return get_root_clk(UART1_CLK_ROOT); case MXC_CSPI_CLK: return get_root_clk(ECSPI1_CLK_ROOT); case MXC_DDR_CLK: return get_ddrc_clk(); case MXC_ESDHC_CLK: return get_root_clk(USDHC1_CLK_ROOT); case MXC_ESDHC2_CLK: return get_root_clk(USDHC2_CLK_ROOT); case MXC_ESDHC3_CLK: return get_root_clk(USDHC3_CLK_ROOT); default: printf("Unsupported mxc_clock %d\n", clk); break; } return 0; } #ifdef CONFIG_SYS_I2C_MXC /* i2c_num can be 0 - 3 */ int enable_i2c_clk(unsigned char enable, unsigned i2c_num) { u32 target; if (i2c_num >= 4) return -EINVAL; if (enable) { clock_enable(CCGR_I2C1 + i2c_num, 0); /* Set i2c root clock to PLL_SYS_MAIN_120M_CLK */ target = CLK_ROOT_ON | I2C1_CLK_ROOT_FROM_PLL_SYS_MAIN_120M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2); clock_set_target_val(I2C1_CLK_ROOT + i2c_num, target); clock_enable(CCGR_I2C1 + i2c_num, 1); } else { clock_enable(CCGR_I2C1 + i2c_num, 0); } return 0; } #endif static void init_clk_esdhc(void) { u32 target; /* disable the clock gate first */ clock_enable(CCGR_USDHC1, 0); clock_enable(CCGR_USDHC2, 0); clock_enable(CCGR_USDHC3, 0); /* 196: 392/2 */ target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2); clock_set_target_val(USDHC1_CLK_ROOT, target); target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2); clock_set_target_val(USDHC2_CLK_ROOT, target); target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2); clock_set_target_val(USDHC3_CLK_ROOT, target); /* enable the clock gate */ clock_enable(CCGR_USDHC1, 1); clock_enable(CCGR_USDHC2, 1); clock_enable(CCGR_USDHC3, 1); } static void init_clk_uart(void) { u32 target; /* disable the clock gate first */ clock_enable(CCGR_UART1, 0); clock_enable(CCGR_UART2, 0); clock_enable(CCGR_UART3, 0); clock_enable(CCGR_UART4, 0); clock_enable(CCGR_UART5, 0); clock_enable(CCGR_UART6, 0); clock_enable(CCGR_UART7, 0); /* 24Mhz */ target = CLK_ROOT_ON | UART1_CLK_ROOT_FROM_OSC_24M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(UART1_CLK_ROOT, target); target = CLK_ROOT_ON | UART2_CLK_ROOT_FROM_OSC_24M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(UART2_CLK_ROOT, target); target = CLK_ROOT_ON | UART3_CLK_ROOT_FROM_OSC_24M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(UART3_CLK_ROOT, target); target = CLK_ROOT_ON | UART4_CLK_ROOT_FROM_OSC_24M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(UART4_CLK_ROOT, target); target = CLK_ROOT_ON | UART5_CLK_ROOT_FROM_OSC_24M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(UART5_CLK_ROOT, target); target = CLK_ROOT_ON | UART6_CLK_ROOT_FROM_OSC_24M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(UART6_CLK_ROOT, target); target = CLK_ROOT_ON | UART7_CLK_ROOT_FROM_OSC_24M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(UART7_CLK_ROOT, target); /* enable the clock gate */ clock_enable(CCGR_UART1, 1); clock_enable(CCGR_UART2, 1); clock_enable(CCGR_UART3, 1); clock_enable(CCGR_UART4, 1); clock_enable(CCGR_UART5, 1); clock_enable(CCGR_UART6, 1); clock_enable(CCGR_UART7, 1); } static void init_clk_weim(void) { u32 target; /* disable the clock gate first */ clock_enable(CCGR_WEIM, 0); /* 120Mhz */ target = CLK_ROOT_ON | EIM_CLK_ROOT_FROM_PLL_SYS_MAIN_120M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(EIM_CLK_ROOT, target); /* enable the clock gate */ clock_enable(CCGR_WEIM, 1); } static void init_clk_ecspi(void) { u32 target; /* disable the clock gate first */ clock_enable(CCGR_ECSPI1, 0); clock_enable(CCGR_ECSPI2, 0); clock_enable(CCGR_ECSPI3, 0); clock_enable(CCGR_ECSPI4, 0); /* 60Mhz: 240/4 */ target = CLK_ROOT_ON | ECSPI1_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4); clock_set_target_val(ECSPI1_CLK_ROOT, target); target = CLK_ROOT_ON | ECSPI2_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4); clock_set_target_val(ECSPI2_CLK_ROOT, target); target = CLK_ROOT_ON | ECSPI3_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4); clock_set_target_val(ECSPI3_CLK_ROOT, target); target = CLK_ROOT_ON | ECSPI4_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4); clock_set_target_val(ECSPI4_CLK_ROOT, target); /* enable the clock gate */ clock_enable(CCGR_ECSPI1, 1); clock_enable(CCGR_ECSPI2, 1); clock_enable(CCGR_ECSPI3, 1); clock_enable(CCGR_ECSPI4, 1); } static void init_clk_wdog(void) { u32 target; /* disable the clock gate first */ clock_enable(CCGR_WDOG1, 0); clock_enable(CCGR_WDOG2, 0); clock_enable(CCGR_WDOG3, 0); clock_enable(CCGR_WDOG4, 0); /* 24Mhz */ target = CLK_ROOT_ON | WDOG_CLK_ROOT_FROM_OSC_24M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(WDOG_CLK_ROOT, target); /* enable the clock gate */ clock_enable(CCGR_WDOG1, 1); clock_enable(CCGR_WDOG2, 1); clock_enable(CCGR_WDOG3, 1); clock_enable(CCGR_WDOG4, 1); } #ifdef CONFIG_MXC_EPDC static void init_clk_epdc(void) { u32 target; /* disable the clock gate first */ clock_enable(CCGR_EPDC, 0); /* 24Mhz */ target = CLK_ROOT_ON | EPDC_PIXEL_CLK_ROOT_FROM_PLL_SYS_MAIN_480M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV12); clock_set_target_val(EPDC_PIXEL_CLK_ROOT, target); /* enable the clock gate */ clock_enable(CCGR_EPDC, 1); } #endif static int enable_pll_enet(void) { u32 reg; s32 timeout = 100000; reg = readl(&ccm_anatop->pll_enet); /* If pll_enet powered up, no need to set it again */ if (reg & ANADIG_PLL_ENET_PWDN_MASK) { reg &= ~ANADIG_PLL_ENET_PWDN_MASK; writel(reg, &ccm_anatop->pll_enet); while (timeout--) { if (readl(&ccm_anatop->pll_enet) & ANADIG_PLL_LOCK) break; } if (timeout <= 0) { /* If timeout, we set pwdn for pll_enet. */ reg |= ANADIG_PLL_ENET_PWDN_MASK; return -ETIME; } } /* Clear bypass */ writel(CCM_ANALOG_PLL_ENET_BYPASS_MASK, &ccm_anatop->pll_enet_clr); writel((CCM_ANALOG_PLL_ENET_ENABLE_CLK_500MHZ_MASK | CCM_ANALOG_PLL_ENET_ENABLE_CLK_250MHZ_MASK | CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ_MASK | CCM_ANALOG_PLL_ENET_ENABLE_CLK_100MHZ_MASK | CCM_ANALOG_PLL_ENET_ENABLE_CLK_50MHZ_MASK | CCM_ANALOG_PLL_ENET_ENABLE_CLK_40MHZ_MASK | CCM_ANALOG_PLL_ENET_ENABLE_CLK_25MHZ_MASK), &ccm_anatop->pll_enet_set); return 0; } static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom, u32 post_div) { u32 reg = 0; ulong start; debug("pll5 div = %d, num = %d, denom = %d\n", pll_div, pll_num, pll_denom); /* Power up PLL5 video and disable its output */ writel(CCM_ANALOG_PLL_VIDEO_CLR_ENABLE_CLK_MASK | CCM_ANALOG_PLL_VIDEO_CLR_POWERDOWN_MASK | CCM_ANALOG_PLL_VIDEO_CLR_BYPASS_MASK | CCM_ANALOG_PLL_VIDEO_CLR_DIV_SELECT_MASK | CCM_ANALOG_PLL_VIDEO_CLR_POST_DIV_SEL_MASK | CCM_ANALOG_PLL_VIDEO_CLR_TEST_DIV_SELECT_MASK, &ccm_anatop->pll_video_clr); /* Set div, num and denom */ switch (post_div) { case 1: writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) | CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x1) | CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0), &ccm_anatop->pll_video_set); break; case 2: writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) | CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) | CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0), &ccm_anatop->pll_video_set); break; case 3: writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) | CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) | CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x1), &ccm_anatop->pll_video_set); break; case 4: writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) | CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) | CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x3), &ccm_anatop->pll_video_set); break; case 0: default: writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) | CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x2) | CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0), &ccm_anatop->pll_video_set); break; } writel(CCM_ANALOG_PLL_VIDEO_NUM_A(pll_num), &ccm_anatop->pll_video_num); writel(CCM_ANALOG_PLL_VIDEO_DENOM_B(pll_denom), &ccm_anatop->pll_video_denom); /* Wait PLL5 lock */ start = get_timer(0); /* Get current timestamp */ do { reg = readl(&ccm_anatop->pll_video); if (reg & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) { /* Enable PLL out */ writel(CCM_ANALOG_PLL_VIDEO_CLR_ENABLE_CLK_MASK, &ccm_anatop->pll_video_set); return 0; } } while (get_timer(0) < (start + 10)); /* Wait 10ms */ printf("Lock PLL5 timeout\n"); return 1; } int set_clk_qspi(void) { u32 target; /* disable the clock gate first */ clock_enable(CCGR_QSPI, 0); /* 49M: 392/2/4 */ target = CLK_ROOT_ON | QSPI_CLK_ROOT_FROM_PLL_SYS_PFD4_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2); clock_set_target_val(QSPI_CLK_ROOT, target); /* enable the clock gate */ clock_enable(CCGR_QSPI, 1); return 0; } int set_clk_nand(void) { u32 target; /* disable the clock gate first */ clock_enable(CCGR_RAWNAND, 0); enable_pll_enet(); /* 100: 500/5 */ target = CLK_ROOT_ON | NAND_CLK_ROOT_FROM_PLL_ENET_MAIN_500M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV5); clock_set_target_val(NAND_CLK_ROOT, target); /* enable the clock gate */ clock_enable(CCGR_RAWNAND, 1); return 0; } void mxs_set_lcdclk(uint32_t base_addr, uint32_t freq) { u32 hck = MXC_HCLK/1000; u32 min = hck * 27; u32 max = hck * 54; u32 temp, best = 0; u32 i, j, pred = 1, postd = 1; u32 pll_div, pll_num, pll_denom, post_div = 0; u32 target; debug("mxs_set_lcdclk, freq = %d\n", freq); clock_enable(CCGR_LCDIF, 0); temp = (freq * 8 * 8); if (temp < min) { for (i = 1; i <= 4; i++) { if ((temp * (1 << i)) > min) { post_div = i; freq = (freq * (1 << i)); break; } } if (5 == i) { printf("Fail to set rate to %dkhz", freq); return; } } for (i = 1; i <= 8; i++) { for (j = 1; j <= 8; j++) { temp = freq * i * j; if (temp > max || temp < min) continue; if (best == 0 || temp < best) { best = temp; pred = i; postd = j; } } } if (best == 0) { printf("Fail to set rate to %dkhz", freq); return; } debug("best %d, pred = %d, postd = %d\n", best, pred, postd); pll_div = best / hck; pll_denom = 1000000; pll_num = (best - hck * pll_div) * pll_denom / hck; if (enable_pll_video(pll_div, pll_num, pll_denom, post_div)) return; target = CLK_ROOT_ON | LCDIF_PIXEL_CLK_ROOT_FROM_PLL_VIDEO_MAIN_CLK | CLK_ROOT_PRE_DIV((pred - 1)) | CLK_ROOT_POST_DIV((postd - 1)); clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, target); clock_enable(CCGR_LCDIF, 1); } #ifdef CONFIG_FEC_MXC int set_clk_enet(enum enet_freq type) { u32 target; int ret; u32 enet1_ref, enet2_ref; /* disable the clock first */ clock_enable(CCGR_ENET1, 0); clock_enable(CCGR_ENET2, 0); switch (type) { case ENET_125MHz: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK; enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK; break; case ENET_50MHz: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK; enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK; break; case ENET_25MHz: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK; enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK; break; default: return -EINVAL; } ret = enable_pll_enet(); if (ret != 0) return ret; /* set enet axi clock 196M: 392/2 */ target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_PLL_SYS_PFD4_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2); clock_set_target_val(ENET_AXI_CLK_ROOT, target); target = CLK_ROOT_ON | enet1_ref | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(ENET1_REF_CLK_ROOT, target); target = CLK_ROOT_ON | ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4); clock_set_target_val(ENET1_TIME_CLK_ROOT, target); target = CLK_ROOT_ON | enet2_ref | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(ENET2_REF_CLK_ROOT, target); target = CLK_ROOT_ON | ENET2_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4); clock_set_target_val(ENET2_TIME_CLK_ROOT, target); #ifdef CONFIG_FEC_MXC_25M_REF_CLK target = CLK_ROOT_ON | ENET_PHY_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(ENET_PHY_REF_CLK_ROOT, target); #endif /* enable clock */ clock_enable(CCGR_ENET1, 1); clock_enable(CCGR_ENET2, 1); return 0; } #endif /* Configure PLL/PFD freq */ void clock_init(void) { /* Rom has enabled PLL_ARM, PLL_DDR, PLL_SYS, PLL_ENET * In u-boot, we have to: * 1. Configure PFD3- PFD7 for freq we needed in u-boot * 2. Set clock root for peripherals (ip channel) used in u-boot but without set rate * interface. The clocks for these peripherals are enabled after this intialization. * 3. Other peripherals with set clock rate interface does not be set in this function. */ u32 reg; /* * Configure PFD4 to 392M * 480M * 18 / 0x16 = 392M */ reg = readl(&ccm_anatop->pfd_480b); reg &= ~(ANATOP_PFD480B_PFD4_FRAC_MASK | CCM_ANALOG_PFD_480B_PFD4_DIV1_CLKGATE_MASK); reg |= ANATOP_PFD480B_PFD4_FRAC_392M_VAL; writel(reg, &ccm_anatop->pfd_480b); init_clk_esdhc(); init_clk_uart(); init_clk_weim(); init_clk_ecspi(); init_clk_wdog(); #ifdef CONFIG_MXC_EPDC init_clk_epdc(); #endif enable_usboh3_clk(1); clock_enable(CCGR_SNVS, 1); #ifdef CONFIG_NAND_MXS clock_enable(CCGR_RAWNAND, 1); #endif if (IS_ENABLED(CONFIG_IMX_RDC)) { clock_enable(CCGR_RDC, 1); clock_enable(CCGR_SEMA1, 1); clock_enable(CCGR_SEMA2, 1); } } #ifdef CONFIG_SECURE_BOOT void hab_caam_clock_enable(unsigned char enable) { if (enable) clock_enable(CCGR_CAAM, 1); else clock_enable(CCGR_CAAM, 0); } #endif #ifdef CONFIG_MXC_EPDC void epdc_clock_enable(void) { clock_enable(CCGR_EPDC, 1); } void epdc_clock_disable(void) { clock_enable(CCGR_EPDC, 0); } #endif /* * Dump some core clockes. */ int do_mx7_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { u32 freq; freq = decode_pll(PLL_CORE, MXC_HCLK); printf("PLL_CORE %8d MHz\n", freq / 1000000); freq = decode_pll(PLL_SYS, MXC_HCLK); printf("PLL_SYS %8d MHz\n", freq / 1000000); freq = decode_pll(PLL_ENET, MXC_HCLK); printf("PLL_NET %8d MHz\n", freq / 1000000); printf("\n"); printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000); printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000); #ifdef CONFIG_MXC_SPI printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000); #endif printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000); printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000); printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000); printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000); printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000); printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000); return 0; } U_BOOT_CMD( clocks, CONFIG_SYS_MAXARGS, 1, do_mx7_showclocks, "display clocks", "" );