/* * * Clock initialization for OMAP4 * * (C) Copyright 2010 * Texas Instruments, * * Aneesh V * * Based on previous work by: * Santosh Shilimkar * Rajendra Nayak * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #ifndef CONFIG_SPL_BUILD /* * printing to console doesn't work unless * this code is executed from SPL */ #define printf(fmt, args...) #define puts(s) #endif #define abs(x) (((x) < 0) ? ((x)*-1) : (x)) struct omap4_prcm_regs *const prcm = (struct omap4_prcm_regs *)0x4A004100; static const u32 sys_clk_array[8] = { 12000000, /* 12 MHz */ 13000000, /* 13 MHz */ 16800000, /* 16.8 MHz */ 19200000, /* 19.2 MHz */ 26000000, /* 26 MHz */ 27000000, /* 27 MHz */ 38400000, /* 38.4 MHz */ }; /* * The M & N values in the following tables are created using the * following tool: * tools/omap/clocks_get_m_n.c * Please use this tool for creating the table for any new frequency. */ /* dpll locked at 1584 MHz - MPU clk at 792 MHz(OPP Turbo) */ static const struct dpll_params mpu_dpll_params_1584mhz[NUM_SYS_CLKS] = { {66, 0, 1, -1, -1, -1, -1, -1}, /* 12 MHz */ {792, 12, 1, -1, -1, -1, -1, -1}, /* 13 MHz */ {330, 6, 1, -1, -1, -1, -1, -1}, /* 16.8 MHz */ {165, 3, 1, -1, -1, -1, -1, -1}, /* 19.2 MHz */ {396, 12, 1, -1, -1, -1, -1, -1}, /* 26 MHz */ {88, 2, 1, -1, -1, -1, -1, -1}, /* 27 MHz */ {165, 7, 1, -1, -1, -1, -1, -1} /* 38.4 MHz */ }; /* dpll locked at 1200 MHz - MPU clk at 600 MHz */ static const struct dpll_params mpu_dpll_params_1200mhz[NUM_SYS_CLKS] = { {50, 0, 1, -1, -1, -1, -1, -1}, /* 12 MHz */ {600, 12, 1, -1, -1, -1, -1, -1}, /* 13 MHz */ {250, 6, 1, -1, -1, -1, -1, -1}, /* 16.8 MHz */ {125, 3, 1, -1, -1, -1, -1, -1}, /* 19.2 MHz */ {300, 12, 1, -1, -1, -1, -1, -1}, /* 26 MHz */ {200, 8, 1, -1, -1, -1, -1, -1}, /* 27 MHz */ {125, 7, 1, -1, -1, -1, -1, -1} /* 38.4 MHz */ }; static const struct dpll_params core_dpll_params_1600mhz[NUM_SYS_CLKS] = { {200, 2, 1, 5, 8, 4, 6, 5}, /* 12 MHz */ {800, 12, 1, 5, 8, 4, 6, 5}, /* 13 MHz */ {619, 12, 1, 5, 8, 4, 6, 5}, /* 16.8 MHz */ {125, 2, 1, 5, 8, 4, 6, 5}, /* 19.2 MHz */ {400, 12, 1, 5, 8, 4, 6, 5}, /* 26 MHz */ {800, 26, 1, 5, 8, 4, 6, 5}, /* 27 MHz */ {125, 5, 1, 5, 8, 4, 6, 5} /* 38.4 MHz */ }; static const struct dpll_params core_dpll_params_es1_1524mhz[NUM_SYS_CLKS] = { {127, 1, 1, 5, 8, 4, 6, 5}, /* 12 MHz */ {762, 12, 1, 5, 8, 4, 6, 5}, /* 13 MHz */ {635, 13, 1, 5, 8, 4, 6, 5}, /* 16.8 MHz */ {635, 15, 1, 5, 8, 4, 6, 5}, /* 19.2 MHz */ {381, 12, 1, 5, 8, 4, 6, 5}, /* 26 MHz */ {254, 8, 1, 5, 8, 4, 6, 5}, /* 27 MHz */ {496, 24, 1, 5, 8, 4, 6, 5} /* 38.4 MHz */ }; static const struct dpll_params core_dpll_params_es2_1600mhz_ddr200mhz[NUM_SYS_CLKS] = { {200, 2, 2, 5, 8, 4, 6, 5}, /* 12 MHz */ {800, 12, 2, 5, 8, 4, 6, 5}, /* 13 MHz */ {619, 12, 2, 5, 8, 4, 6, 5}, /* 16.8 MHz */ {125, 2, 2, 5, 8, 4, 6, 5}, /* 19.2 MHz */ {400, 12, 2, 5, 8, 4, 6, 5}, /* 26 MHz */ {800, 26, 2, 5, 8, 4, 6, 5}, /* 27 MHz */ {125, 5, 2, 5, 8, 4, 6, 5} /* 38.4 MHz */ }; static const struct dpll_params per_dpll_params_1536mhz[NUM_SYS_CLKS] = { {64, 0, 8, 6, 12, 9, 4, 5}, /* 12 MHz */ {768, 12, 8, 6, 12, 9, 4, 5}, /* 13 MHz */ {320, 6, 8, 6, 12, 9, 4, 5}, /* 16.8 MHz */ {40, 0, 8, 6, 12, 9, 4, 5}, /* 19.2 MHz */ {384, 12, 8, 6, 12, 9, 4, 5}, /* 26 MHz */ {256, 8, 8, 6, 12, 9, 4, 5}, /* 27 MHz */ {20, 0, 8, 6, 12, 9, 4, 5} /* 38.4 MHz */ }; static const struct dpll_params iva_dpll_params_1862mhz[NUM_SYS_CLKS] = { {931, 11, -1, -1, 4, 7, -1, -1}, /* 12 MHz */ {931, 12, -1, -1, 4, 7, -1, -1}, /* 13 MHz */ {665, 11, -1, -1, 4, 7, -1, -1}, /* 16.8 MHz */ {727, 14, -1, -1, 4, 7, -1, -1}, /* 19.2 MHz */ {931, 25, -1, -1, 4, 7, -1, -1}, /* 26 MHz */ {931, 26, -1, -1, 4, 7, -1, -1}, /* 27 MHz */ {412, 16, -1, -1, 4, 7, -1, -1} /* 38.4 MHz */ }; /* ABE M & N values with sys_clk as source */ static const struct dpll_params abe_dpll_params_sysclk_196608khz[NUM_SYS_CLKS] = { {49, 5, 1, 1, -1, -1, -1, -1}, /* 12 MHz */ {68, 8, 1, 1, -1, -1, -1, -1}, /* 13 MHz */ {35, 5, 1, 1, -1, -1, -1, -1}, /* 16.8 MHz */ {46, 8, 1, 1, -1, -1, -1, -1}, /* 19.2 MHz */ {34, 8, 1, 1, -1, -1, -1, -1}, /* 26 MHz */ {29, 7, 1, 1, -1, -1, -1, -1}, /* 27 MHz */ {64, 24, 1, 1, -1, -1, -1, -1} /* 38.4 MHz */ }; /* ABE M & N values with 32K clock as source */ static const struct dpll_params abe_dpll_params_32k_196608khz = { 750, 0, 1, 1, -1, -1, -1, -1 }; static const struct dpll_params usb_dpll_params_1920mhz[NUM_SYS_CLKS] = { {80, 0, 2, -1, -1, -1, -1, -1}, /* 12 MHz */ {960, 12, 2, -1, -1, -1, -1, -1}, /* 13 MHz */ {400, 6, 2, -1, -1, -1, -1, -1}, /* 16.8 MHz */ {50, 0, 2, -1, -1, -1, -1, -1}, /* 19.2 MHz */ {480, 12, 2, -1, -1, -1, -1, -1}, /* 26 MHz */ {320, 8, 2, -1, -1, -1, -1, -1}, /* 27 MHz */ {25, 0, 2, -1, -1, -1, -1, -1} /* 38.4 MHz */ }; static inline u32 __get_sys_clk_index(void) { u32 ind; /* * For ES1 the ROM code calibration of sys clock is not reliable * due to hw issue. So, use hard-coded value. If this value is not * correct for any board over-ride this function in board file * From ES2.0 onwards you will get this information from * CM_SYS_CLKSEL */ if (omap_revision() == OMAP4430_ES1_0) ind = OMAP_SYS_CLK_IND_38_4_MHZ; else { /* SYS_CLKSEL - 1 to match the dpll param array indices */ ind = (readl(&prcm->cm_sys_clksel) & CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1; } return ind; } u32 get_sys_clk_index(void) __attribute__ ((weak, alias("__get_sys_clk_index"))); u32 get_sys_clk_freq(void) { u8 index = get_sys_clk_index(); return sys_clk_array[index]; } static inline void do_bypass_dpll(u32 *const base) { struct dpll_regs *dpll_regs = (struct dpll_regs *)base; clrsetbits_le32(&dpll_regs->cm_clkmode_dpll, CM_CLKMODE_DPLL_DPLL_EN_MASK, DPLL_EN_FAST_RELOCK_BYPASS << CM_CLKMODE_DPLL_EN_SHIFT); } static inline void wait_for_bypass(u32 *const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll, LDELAY)) { printf("Bypassing DPLL failed %p\n", base); } } static inline void do_lock_dpll(u32 *const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; clrsetbits_le32(&dpll_regs->cm_clkmode_dpll, CM_CLKMODE_DPLL_DPLL_EN_MASK, DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT); } static inline void wait_for_lock(u32 *const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK, &dpll_regs->cm_idlest_dpll, LDELAY)) { printf("DPLL locking failed for %p\n", base); hang(); } } static void do_setup_dpll(u32 *const base, const struct dpll_params *params, u8 lock) { u32 temp; struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; bypass_dpll(base); /* Set M & N */ temp = readl(&dpll_regs->cm_clksel_dpll); temp &= ~CM_CLKSEL_DPLL_M_MASK; temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK; temp &= ~CM_CLKSEL_DPLL_N_MASK; temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK; writel(temp, &dpll_regs->cm_clksel_dpll); /* Lock */ if (lock) do_lock_dpll(base); /* Setup post-dividers */ if (params->m2 >= 0) writel(params->m2, &dpll_regs->cm_div_m2_dpll); if (params->m3 >= 0) writel(params->m3, &dpll_regs->cm_div_m3_dpll); if (params->m4 >= 0) writel(params->m4, &dpll_regs->cm_div_m4_dpll); if (params->m5 >= 0) writel(params->m5, &dpll_regs->cm_div_m5_dpll); if (params->m6 >= 0) writel(params->m6, &dpll_regs->cm_div_m6_dpll); if (params->m7 >= 0) writel(params->m7, &dpll_regs->cm_div_m7_dpll); /* Wait till the DPLL locks */ if (lock) wait_for_lock(base); } const struct dpll_params *get_core_dpll_params(void) { u32 sysclk_ind = get_sys_clk_index(); switch (omap_revision()) { case OMAP4430_ES1_0: return &core_dpll_params_es1_1524mhz[sysclk_ind]; case OMAP4430_ES2_0: case OMAP4430_SILICON_ID_INVALID: /* safest */ return &core_dpll_params_es2_1600mhz_ddr200mhz[sysclk_ind]; default: return &core_dpll_params_1600mhz[sysclk_ind]; } } u32 omap4_ddr_clk(void) { u32 ddr_clk, sys_clk_khz; const struct dpll_params *core_dpll_params; sys_clk_khz = get_sys_clk_freq() / 1000; core_dpll_params = get_core_dpll_params(); debug("sys_clk %d\n ", sys_clk_khz * 1000); /* Find Core DPLL locked frequency first */ ddr_clk = sys_clk_khz * 2 * core_dpll_params->m / (core_dpll_params->n + 1); /* * DDR frequency is PHY_ROOT_CLK/2 * PHY_ROOT_CLK = Fdpll/2/M2 */ ddr_clk = ddr_clk / 4 / core_dpll_params->m2; ddr_clk *= 1000; /* convert to Hz */ debug("ddr_clk %d\n ", ddr_clk); return ddr_clk; } static void setup_dplls(void) { u32 sysclk_ind, temp; const struct dpll_params *params; debug("setup_dplls\n"); sysclk_ind = get_sys_clk_index(); /* CORE dpll */ params = get_core_dpll_params(); /* default - safest */ /* * Do not lock the core DPLL now. Just set it up. * Core DPLL will be locked after setting up EMIF * using the FREQ_UPDATE method(freq_update_core()) */ do_setup_dpll(&prcm->cm_clkmode_dpll_core, params, DPLL_NO_LOCK); /* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */ temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) | (CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) | (CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT); writel(temp, &prcm->cm_clksel_core); debug("Core DPLL configured\n"); /* lock PER dpll */ do_setup_dpll(&prcm->cm_clkmode_dpll_per, &per_dpll_params_1536mhz[sysclk_ind], DPLL_LOCK); debug("PER DPLL locked\n"); /* MPU dpll */ if (omap_revision() == OMAP4430_ES1_0) params = &mpu_dpll_params_1200mhz[sysclk_ind]; else params = &mpu_dpll_params_1584mhz[sysclk_ind]; do_setup_dpll(&prcm->cm_clkmode_dpll_mpu, params, DPLL_LOCK); debug("MPU DPLL locked\n"); } static void setup_non_essential_dplls(void) { u32 sys_clk_khz, abe_ref_clk; u32 sysclk_ind, sd_div, num, den; const struct dpll_params *params; sysclk_ind = get_sys_clk_index(); sys_clk_khz = get_sys_clk_freq() / 1000; /* IVA */ clrsetbits_le32(&prcm->cm_bypclk_dpll_iva, CM_BYPCLK_DPLL_IVA_CLKSEL_MASK, DPLL_IVA_CLKSEL_CORE_X2_DIV_2); do_setup_dpll(&prcm->cm_clkmode_dpll_iva, &iva_dpll_params_1862mhz[sysclk_ind], DPLL_LOCK); /* * USB: * USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction * DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250) * - where CLKINP is sys_clk in MHz * Use CLKINP in KHz and adjust the denominator accordingly so * that we have enough accuracy and at the same time no overflow */ params = &usb_dpll_params_1920mhz[sysclk_ind]; num = params->m * sys_clk_khz; den = (params->n + 1) * 250 * 1000; num += den - 1; sd_div = num / den; clrsetbits_le32(&prcm->cm_clksel_dpll_usb, CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK, sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT); /* Now setup the dpll with the regular function */ do_setup_dpll(&prcm->cm_clkmode_dpll_usb, params, DPLL_LOCK); #ifdef CONFIG_SYS_OMAP4_ABE_SYSCK params = &abe_dpll_params_sysclk_196608khz[sysclk_ind]; abe_ref_clk = CM_ABE_PLL_REF_CLKSEL_CLKSEL_SYSCLK; #else params = &abe_dpll_params_32k_196608khz; abe_ref_clk = CM_ABE_PLL_REF_CLKSEL_CLKSEL_32KCLK; /* * We need to enable some additional options to achieve * 196.608MHz from 32768 Hz */ setbits_le32(&prcm->cm_clkmode_dpll_abe, CM_CLKMODE_DPLL_DRIFTGUARD_EN_MASK| CM_CLKMODE_DPLL_RELOCK_RAMP_EN_MASK| CM_CLKMODE_DPLL_LPMODE_EN_MASK| CM_CLKMODE_DPLL_REGM4XEN_MASK); /* Spend 4 REFCLK cycles at each stage */ clrsetbits_le32(&prcm->cm_clkmode_dpll_abe, CM_CLKMODE_DPLL_RAMP_RATE_MASK, 1 << CM_CLKMODE_DPLL_RAMP_RATE_SHIFT); #endif /* Select the right reference clk */ clrsetbits_le32(&prcm->cm_abe_pll_ref_clksel, CM_ABE_PLL_REF_CLKSEL_CLKSEL_MASK, abe_ref_clk << CM_ABE_PLL_REF_CLKSEL_CLKSEL_SHIFT); /* Lock the dpll */ do_setup_dpll(&prcm->cm_clkmode_dpll_abe, params, DPLL_LOCK); } static void do_scale_vcore(u32 vcore_reg, u32 volt_mv) { u32 temp, offset_code; u32 step = 12660; /* 12.66 mV represented in uV */ u32 offset = volt_mv; /* convert to uV for better accuracy in the calculations */ offset *= 1000; if (omap_revision() == OMAP4430_ES1_0) offset -= PHOENIX_SMPS_BASE_VOLT_STD_MODE_UV; else offset -= PHOENIX_SMPS_BASE_VOLT_STD_MODE_WITH_OFFSET_UV; offset_code = (offset + step - 1) / step; /* The code starts at 1 not 0 */ offset_code++; debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv, offset_code); temp = SMPS_I2C_SLAVE_ADDR | (vcore_reg << PRM_VC_VAL_BYPASS_REGADDR_SHIFT) | (offset_code << PRM_VC_VAL_BYPASS_DATA_SHIFT) | PRM_VC_VAL_BYPASS_VALID_BIT; writel(temp, &prcm->prm_vc_val_bypass); if (!wait_on_value(PRM_VC_VAL_BYPASS_VALID_BIT, 0, &prcm->prm_vc_val_bypass, LDELAY)) { printf("Scaling voltage failed for 0x%x\n", vcore_reg); } } /* * Setup the voltages for vdd_mpu, vdd_core, and vdd_iva * We set the maximum voltages allowed here because Smart-Reflex is not * enabled in bootloader. Voltage initialization in the kernel will set * these to the nominal values after enabling Smart-Reflex */ static void scale_vcores(void) { u32 volt, sys_clk_khz, cycles_hi, cycles_low, temp; sys_clk_khz = get_sys_clk_freq() / 1000; /* * Setup the dedicated I2C controller for Voltage Control * I2C clk - high period 40% low period 60% */ cycles_hi = sys_clk_khz * 4 / PRM_VC_I2C_CHANNEL_FREQ_KHZ / 10; cycles_low = sys_clk_khz * 6 / PRM_VC_I2C_CHANNEL_FREQ_KHZ / 10; /* values to be set in register - less by 5 & 7 respectively */ cycles_hi -= 5; cycles_low -= 7; temp = (cycles_hi << PRM_VC_CFG_I2C_CLK_SCLH_SHIFT) | (cycles_low << PRM_VC_CFG_I2C_CLK_SCLL_SHIFT); writel(temp, &prcm->prm_vc_cfg_i2c_clk); /* Disable high speed mode and all advanced features */ writel(0x0, &prcm->prm_vc_cfg_i2c_mode); /* * VCORE 1 - 4430 : supplies vdd_mpu * Setting a high voltage for Nitro mode as smart reflex is not enabled. * We use the maximum possible value in the AVS range because the next * higher voltage in the discrete range (code >= 0b111010) is way too * high */ volt = 1417; do_scale_vcore(SMPS_REG_ADDR_VCORE1, volt); /* VCORE 2 - supplies vdd_iva */ volt = 1200; do_scale_vcore(SMPS_REG_ADDR_VCORE2, volt); /* VCORE 3 - supplies vdd_core */ volt = 1200; do_scale_vcore(SMPS_REG_ADDR_VCORE3, volt); } static inline void enable_clock_domain(u32 *const clkctrl_reg, u32 enable_mode) { clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK, enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT); debug("Enable clock domain - 0x%08x\n", clkctrl_reg); } static inline void wait_for_clk_enable(u32 *clkctrl_addr) { u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED; u32 bound = LDELAY; while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) || (idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) { clkctrl = readl(clkctrl_addr); idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >> MODULE_CLKCTRL_IDLEST_SHIFT; if (--bound == 0) { printf("Clock enable failed for 0x%p idlest 0x%x\n", clkctrl_addr, clkctrl); return; } } } static inline void enable_clock_module(u32 *const clkctrl_addr, u32 enable_mode, u32 wait_for_enable) { clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK, enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT); debug("Enable clock module - 0x%08x\n", clkctrl_addr); if (wait_for_enable) wait_for_clk_enable(clkctrl_addr); } /* * Enable essential clock domains, modules and * do some additional special settings needed */ static void enable_basic_clocks(void) { u32 i, max = 100, wait_for_enable = 1; u32 *const clk_domains_essential[] = { &prcm->cm_l4per_clkstctrl, &prcm->cm_l3init_clkstctrl, &prcm->cm_memif_clkstctrl, &prcm->cm_l4cfg_clkstctrl, 0 }; u32 *const clk_modules_hw_auto_essential[] = { &prcm->cm_wkup_gpio1_clkctrl, &prcm->cm_l4per_gpio2_clkctrl, &prcm->cm_l4per_gpio3_clkctrl, &prcm->cm_l4per_gpio4_clkctrl, &prcm->cm_l4per_gpio5_clkctrl, &prcm->cm_l4per_gpio6_clkctrl, &prcm->cm_memif_emif_1_clkctrl, &prcm->cm_memif_emif_2_clkctrl, &prcm->cm_l3init_hsusbotg_clkctrl, &prcm->cm_l3init_usbphy_clkctrl, &prcm->cm_l4cfg_l4_cfg_clkctrl, 0 }; u32 *const clk_modules_explicit_en_essential[] = { &prcm->cm_l4per_gptimer2_clkctrl, &prcm->cm_l3init_hsmmc1_clkctrl, &prcm->cm_l3init_hsmmc2_clkctrl, &prcm->cm_l4per_mcspi1_clkctrl, &prcm->cm_wkup_gptimer1_clkctrl, &prcm->cm_l4per_i2c1_clkctrl, &prcm->cm_l4per_i2c2_clkctrl, &prcm->cm_l4per_i2c3_clkctrl, &prcm->cm_l4per_i2c4_clkctrl, &prcm->cm_wkup_wdtimer2_clkctrl, &prcm->cm_l4per_uart3_clkctrl, 0 }; /* Enable optional additional functional clock for GPIO4 */ setbits_le32(&prcm->cm_l4per_gpio4_clkctrl, GPIO4_CLKCTRL_OPTFCLKEN_MASK); /* Enable 96 MHz clock for MMC1 & MMC2 */ setbits_le32(&prcm->cm_l3init_hsmmc1_clkctrl, HSMMC_CLKCTRL_CLKSEL_MASK); setbits_le32(&prcm->cm_l3init_hsmmc2_clkctrl, HSMMC_CLKCTRL_CLKSEL_MASK); /* Select 32KHz clock as the source of GPTIMER1 */ setbits_le32(&prcm->cm_wkup_gptimer1_clkctrl, GPTIMER1_CLKCTRL_CLKSEL_MASK); /* Enable optional 48M functional clock for USB PHY */ setbits_le32(&prcm->cm_l3init_usbphy_clkctrl, USBPHY_CLKCTRL_OPTFCLKEN_PHY_48M_MASK); /* Put the clock domains in SW_WKUP mode */ for (i = 0; (i < max) && clk_domains_essential[i]; i++) { enable_clock_domain(clk_domains_essential[i], CD_CLKCTRL_CLKTRCTRL_SW_WKUP); } /* Clock modules that need to be put in HW_AUTO */ for (i = 0; (i < max) && clk_modules_hw_auto_essential[i]; i++) { enable_clock_module(clk_modules_hw_auto_essential[i], MODULE_CLKCTRL_MODULEMODE_HW_AUTO, wait_for_enable); }; /* Clock modules that need to be put in SW_EXPLICIT_EN mode */ for (i = 0; (i < max) && clk_modules_explicit_en_essential[i]; i++) { enable_clock_module(clk_modules_explicit_en_essential[i], MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN, wait_for_enable); }; /* Put the clock domains in HW_AUTO mode now */ for (i = 0; (i < max) && clk_domains_essential[i]; i++) { enable_clock_domain(clk_domains_essential[i], CD_CLKCTRL_CLKTRCTRL_HW_AUTO); } } /* * Enable non-essential clock domains, modules and * do some additional special settings needed */ static void enable_non_essential_clocks(void) { u32 i, max = 100, wait_for_enable = 0; u32 *const clk_domains_non_essential[] = { &prcm->cm_mpu_m3_clkstctrl, &prcm->cm_ivahd_clkstctrl, &prcm->cm_dsp_clkstctrl, &prcm->cm_dss_clkstctrl, &prcm->cm_sgx_clkstctrl, &prcm->cm1_abe_clkstctrl, &prcm->cm_c2c_clkstctrl, &prcm->cm_cam_clkstctrl, &prcm->cm_dss_clkstctrl, &prcm->cm_sdma_clkstctrl, 0 }; u32 *const clk_modules_hw_auto_non_essential[] = { &prcm->cm_mpu_m3_mpu_m3_clkctrl, &prcm->cm_ivahd_ivahd_clkctrl, &prcm->cm_ivahd_sl2_clkctrl, &prcm->cm_dsp_dsp_clkctrl, &prcm->cm_l3_2_gpmc_clkctrl, &prcm->cm_l3instr_l3_3_clkctrl, &prcm->cm_l3instr_l3_instr_clkctrl, &prcm->cm_l3instr_intrconn_wp1_clkctrl, &prcm->cm_l3init_hsi_clkctrl, &prcm->cm_l3init_hsusbtll_clkctrl, 0 }; u32 *const clk_modules_explicit_en_non_essential[] = { &prcm->cm1_abe_aess_clkctrl, &prcm->cm1_abe_pdm_clkctrl, &prcm->cm1_abe_dmic_clkctrl, &prcm->cm1_abe_mcasp_clkctrl, &prcm->cm1_abe_mcbsp1_clkctrl, &prcm->cm1_abe_mcbsp2_clkctrl, &prcm->cm1_abe_mcbsp3_clkctrl, &prcm->cm1_abe_slimbus_clkctrl, &prcm->cm1_abe_timer5_clkctrl, &prcm->cm1_abe_timer6_clkctrl, &prcm->cm1_abe_timer7_clkctrl, &prcm->cm1_abe_timer8_clkctrl, &prcm->cm1_abe_wdt3_clkctrl, &prcm->cm_l4per_gptimer9_clkctrl, &prcm->cm_l4per_gptimer10_clkctrl, &prcm->cm_l4per_gptimer11_clkctrl, &prcm->cm_l4per_gptimer3_clkctrl, &prcm->cm_l4per_gptimer4_clkctrl, &prcm->cm_l4per_hdq1w_clkctrl, &prcm->cm_l4per_mcbsp4_clkctrl, &prcm->cm_l4per_mcspi2_clkctrl, &prcm->cm_l4per_mcspi3_clkctrl, &prcm->cm_l4per_mcspi4_clkctrl, &prcm->cm_l4per_mmcsd3_clkctrl, &prcm->cm_l4per_mmcsd4_clkctrl, &prcm->cm_l4per_mmcsd5_clkctrl, &prcm->cm_l4per_uart1_clkctrl, &prcm->cm_l4per_uart2_clkctrl, &prcm->cm_l4per_uart4_clkctrl, &prcm->cm_wkup_keyboard_clkctrl, &prcm->cm_wkup_wdtimer2_clkctrl, &prcm->cm_cam_iss_clkctrl, &prcm->cm_cam_fdif_clkctrl, &prcm->cm_dss_dss_clkctrl, &prcm->cm_sgx_sgx_clkctrl, &prcm->cm_l3init_hsusbhost_clkctrl, &prcm->cm_l3init_fsusb_clkctrl, 0 }; /* Enable optional functional clock for ISS */ setbits_le32(&prcm->cm_cam_iss_clkctrl, ISS_CLKCTRL_OPTFCLKEN_MASK); /* Enable all optional functional clocks of DSS */ setbits_le32(&prcm->cm_dss_dss_clkctrl, DSS_CLKCTRL_OPTFCLKEN_MASK); /* Put the clock domains in SW_WKUP mode */ for (i = 0; (i < max) && clk_domains_non_essential[i]; i++) { enable_clock_domain(clk_domains_non_essential[i], CD_CLKCTRL_CLKTRCTRL_SW_WKUP); } /* Clock modules that need to be put in HW_AUTO */ for (i = 0; (i < max) && clk_modules_hw_auto_non_essential[i]; i++) { enable_clock_module(clk_modules_hw_auto_non_essential[i], MODULE_CLKCTRL_MODULEMODE_HW_AUTO, wait_for_enable); }; /* Clock modules that need to be put in SW_EXPLICIT_EN mode */ for (i = 0; (i < max) && clk_modules_explicit_en_non_essential[i]; i++) { enable_clock_module(clk_modules_explicit_en_non_essential[i], MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN, wait_for_enable); }; /* Put the clock domains in HW_AUTO mode now */ for (i = 0; (i < max) && clk_domains_non_essential[i]; i++) { enable_clock_domain(clk_domains_non_essential[i], CD_CLKCTRL_CLKTRCTRL_HW_AUTO); } /* Put camera module in no sleep mode */ clrsetbits_le32(&prcm->cm_cam_clkstctrl, MODULE_CLKCTRL_MODULEMODE_MASK, CD_CLKCTRL_CLKTRCTRL_NO_SLEEP << MODULE_CLKCTRL_MODULEMODE_SHIFT); } void freq_update_core(void) { u32 freq_config1 = 0; const struct dpll_params *core_dpll_params; core_dpll_params = get_core_dpll_params(); /* Put EMIF clock domain in sw wakeup mode */ enable_clock_domain(&prcm->cm_memif_clkstctrl, CD_CLKCTRL_CLKTRCTRL_SW_WKUP); wait_for_clk_enable(&prcm->cm_memif_emif_1_clkctrl); wait_for_clk_enable(&prcm->cm_memif_emif_2_clkctrl); freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK | SHADOW_FREQ_CONFIG1_DLL_RESET_MASK; freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) & SHADOW_FREQ_CONFIG1_DPLL_EN_MASK; freq_config1 |= (core_dpll_params->m2 << SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) & SHADOW_FREQ_CONFIG1_M2_DIV_MASK; writel(freq_config1, &prcm->cm_shadow_freq_config1); if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0, &prcm->cm_shadow_freq_config1, LDELAY)) { puts("FREQ UPDATE procedure failed!!"); hang(); } /* Put EMIF clock domain back in hw auto mode */ enable_clock_domain(&prcm->cm_memif_clkstctrl, CD_CLKCTRL_CLKTRCTRL_HW_AUTO); wait_for_clk_enable(&prcm->cm_memif_emif_1_clkctrl); wait_for_clk_enable(&prcm->cm_memif_emif_2_clkctrl); } void bypass_dpll(u32 *const base) { do_bypass_dpll(base); wait_for_bypass(base); } void lock_dpll(u32 *const base) { do_lock_dpll(base); wait_for_lock(base); } void setup_clocks_for_console(void) { /* Do not add any spl_debug prints in this function */ clrsetbits_le32(&prcm->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK, CD_CLKCTRL_CLKTRCTRL_SW_WKUP << CD_CLKCTRL_CLKTRCTRL_SHIFT); /* Enable all UARTs - console will be on one of them */ clrsetbits_le32(&prcm->cm_l4per_uart1_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32(&prcm->cm_l4per_uart2_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32(&prcm->cm_l4per_uart3_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32(&prcm->cm_l4per_uart3_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32(&prcm->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK, CD_CLKCTRL_CLKTRCTRL_HW_AUTO << CD_CLKCTRL_CLKTRCTRL_SHIFT); } void prcm_init(void) { switch (omap4_hw_init_context()) { case OMAP_INIT_CONTEXT_SPL: case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR: case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH: scale_vcores(); setup_dplls(); enable_basic_clocks(); setup_non_essential_dplls(); enable_non_essential_clocks(); break; default: break; } }