/* * * Functions for omap5 based boards. * * (C) Copyright 2011 * Texas Instruments, * * Author : * Aneesh V * Steve Sakoman * Sricharan * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; u32 *const omap_si_rev = (u32 *)OMAP_SRAM_SCRATCH_OMAP_REV; static struct gpio_bank gpio_bank_54xx[8] = { { (void *)OMAP54XX_GPIO1_BASE, METHOD_GPIO_24XX }, { (void *)OMAP54XX_GPIO2_BASE, METHOD_GPIO_24XX }, { (void *)OMAP54XX_GPIO3_BASE, METHOD_GPIO_24XX }, { (void *)OMAP54XX_GPIO4_BASE, METHOD_GPIO_24XX }, { (void *)OMAP54XX_GPIO5_BASE, METHOD_GPIO_24XX }, { (void *)OMAP54XX_GPIO6_BASE, METHOD_GPIO_24XX }, { (void *)OMAP54XX_GPIO7_BASE, METHOD_GPIO_24XX }, { (void *)OMAP54XX_GPIO8_BASE, METHOD_GPIO_24XX }, }; const struct gpio_bank *const omap_gpio_bank = gpio_bank_54xx; void do_set_mux32(u32 base, struct pad_conf_entry const *array, int size) { int i; struct pad_conf_entry *pad = (struct pad_conf_entry *)array; for (i = 0; i < size; i++, pad++) writel(pad->val, base + pad->offset); } #ifdef CONFIG_SPL_BUILD /* LPDDR2 specific IO settings */ static void io_settings_lpddr2(void) { const struct ctrl_ioregs *ioregs; get_ioregs(&ioregs); writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch1_0); writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch1_1); writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch2_0); writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch2_1); writel(ioregs->ctrl_lpddr2ch, (*ctrl)->control_lpddr2ch1_0); writel(ioregs->ctrl_lpddr2ch, (*ctrl)->control_lpddr2ch1_1); writel(ioregs->ctrl_ddrio_0, (*ctrl)->control_ddrio_0); writel(ioregs->ctrl_ddrio_1, (*ctrl)->control_ddrio_1); writel(ioregs->ctrl_ddrio_2, (*ctrl)->control_ddrio_2); } /* DDR3 specific IO settings */ static void io_settings_ddr3(void) { u32 io_settings = 0; const struct ctrl_ioregs *ioregs; get_ioregs(&ioregs); writel(ioregs->ctrl_ddr3ch, (*ctrl)->control_ddr3ch1_0); writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch1_0); writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch1_1); writel(ioregs->ctrl_ddr3ch, (*ctrl)->control_ddr3ch2_0); writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch2_0); writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch2_1); writel(ioregs->ctrl_ddrio_0, (*ctrl)->control_ddrio_0); writel(ioregs->ctrl_ddrio_1, (*ctrl)->control_ddrio_1); if (!is_dra7xx()) { writel(ioregs->ctrl_ddrio_2, (*ctrl)->control_ddrio_2); writel(ioregs->ctrl_lpddr2ch, (*ctrl)->control_lpddr2ch1_1); } /* omap5432 does not use lpddr2 */ writel(ioregs->ctrl_lpddr2ch, (*ctrl)->control_lpddr2ch1_0); writel(ioregs->ctrl_emif_sdram_config_ext, (*ctrl)->control_emif1_sdram_config_ext); if (!is_dra72x()) writel(ioregs->ctrl_emif_sdram_config_ext, (*ctrl)->control_emif2_sdram_config_ext); if (is_omap54xx()) { /* Disable DLL select */ io_settings = (readl((*ctrl)->control_port_emif1_sdram_config) & 0xFFEFFFFF); writel(io_settings, (*ctrl)->control_port_emif1_sdram_config); io_settings = (readl((*ctrl)->control_port_emif2_sdram_config) & 0xFFEFFFFF); writel(io_settings, (*ctrl)->control_port_emif2_sdram_config); } else { writel(ioregs->ctrl_ddr_ctrl_ext_0, (*ctrl)->control_ddr_control_ext_0); } } /* * Some tuning of IOs for optimal power and performance */ void do_io_settings(void) { u32 io_settings = 0, mask = 0; struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE; /* Impedance settings EMMC, C2C 1,2, hsi2 */ mask = (ds_mask << 2) | (ds_mask << 8) | (ds_mask << 16) | (ds_mask << 18); io_settings = readl((*ctrl)->control_smart1io_padconf_0) & (~mask); io_settings |= (ds_60_ohm << 8) | (ds_45_ohm << 16) | (ds_45_ohm << 18) | (ds_60_ohm << 2); writel(io_settings, (*ctrl)->control_smart1io_padconf_0); /* Impedance settings Mcspi2 */ mask = (ds_mask << 30); io_settings = readl((*ctrl)->control_smart1io_padconf_1) & (~mask); io_settings |= (ds_60_ohm << 30); writel(io_settings, (*ctrl)->control_smart1io_padconf_1); /* Impedance settings C2C 3,4 */ mask = (ds_mask << 14) | (ds_mask << 16); io_settings = readl((*ctrl)->control_smart1io_padconf_2) & (~mask); io_settings |= (ds_45_ohm << 14) | (ds_45_ohm << 16); writel(io_settings, (*ctrl)->control_smart1io_padconf_2); /* Slew rate settings EMMC, C2C 1,2 */ mask = (sc_mask << 8) | (sc_mask << 16) | (sc_mask << 18); io_settings = readl((*ctrl)->control_smart2io_padconf_0) & (~mask); io_settings |= (sc_fast << 8) | (sc_na << 16) | (sc_na << 18); writel(io_settings, (*ctrl)->control_smart2io_padconf_0); /* Slew rate settings hsi2, Mcspi2 */ mask = (sc_mask << 24) | (sc_mask << 28); io_settings = readl((*ctrl)->control_smart2io_padconf_1) & (~mask); io_settings |= (sc_fast << 28) | (sc_fast << 24); writel(io_settings, (*ctrl)->control_smart2io_padconf_1); /* Slew rate settings C2C 3,4 */ mask = (sc_mask << 16) | (sc_mask << 18); io_settings = readl((*ctrl)->control_smart2io_padconf_2) & (~mask); io_settings |= (sc_na << 16) | (sc_na << 18); writel(io_settings, (*ctrl)->control_smart2io_padconf_2); /* impedance and slew rate settings for usb */ mask = (usb_i_mask << 29) | (usb_i_mask << 26) | (usb_i_mask << 23) | (usb_i_mask << 20) | (usb_i_mask << 17) | (usb_i_mask << 14); io_settings = readl((*ctrl)->control_smart3io_padconf_1) & (~mask); io_settings |= (ds_60_ohm << 29) | (ds_60_ohm << 26) | (ds_60_ohm << 23) | (sc_fast << 20) | (sc_fast << 17) | (sc_fast << 14); writel(io_settings, (*ctrl)->control_smart3io_padconf_1); if (emif_sdram_type(emif->emif_sdram_config) == EMIF_SDRAM_TYPE_LPDDR2) io_settings_lpddr2(); else io_settings_ddr3(); } static const struct srcomp_params srcomp_parameters[NUM_SYS_CLKS] = { {0x45, 0x1}, /* 12 MHz */ {-1, -1}, /* 13 MHz */ {0x63, 0x2}, /* 16.8 MHz */ {0x57, 0x2}, /* 19.2 MHz */ {0x20, 0x1}, /* 26 MHz */ {-1, -1}, /* 27 MHz */ {0x41, 0x3} /* 38.4 MHz */ }; void srcomp_enable(void) { u32 srcomp_value, mul_factor, div_factor, clk_val, i; u32 sysclk_ind = get_sys_clk_index(); u32 omap_rev = omap_revision(); if (!is_omap54xx()) return; mul_factor = srcomp_parameters[sysclk_ind].multiply_factor; div_factor = srcomp_parameters[sysclk_ind].divide_factor; for (i = 0; i < 4; i++) { srcomp_value = readl((*ctrl)->control_srcomp_north_side + i*4); srcomp_value &= ~(MULTIPLY_FACTOR_XS_MASK | DIVIDE_FACTOR_XS_MASK); srcomp_value |= (mul_factor << MULTIPLY_FACTOR_XS_SHIFT) | (div_factor << DIVIDE_FACTOR_XS_SHIFT); writel(srcomp_value, (*ctrl)->control_srcomp_north_side + i*4); } if ((omap_rev == OMAP5430_ES1_0) || (omap_rev == OMAP5432_ES1_0)) { clk_val = readl((*prcm)->cm_coreaon_io_srcomp_clkctrl); clk_val |= OPTFCLKEN_SRCOMP_FCLK_MASK; writel(clk_val, (*prcm)->cm_coreaon_io_srcomp_clkctrl); for (i = 0; i < 4; i++) { srcomp_value = readl((*ctrl)->control_srcomp_north_side + i*4); srcomp_value &= ~PWRDWN_XS_MASK; writel(srcomp_value, (*ctrl)->control_srcomp_north_side + i*4); while (((readl((*ctrl)->control_srcomp_north_side + i*4) & SRCODE_READ_XS_MASK) >> SRCODE_READ_XS_SHIFT) == 0) ; srcomp_value = readl((*ctrl)->control_srcomp_north_side + i*4); srcomp_value &= ~OVERRIDE_XS_MASK; writel(srcomp_value, (*ctrl)->control_srcomp_north_side + i*4); } } else { srcomp_value = readl((*ctrl)->control_srcomp_east_side_wkup); srcomp_value &= ~(MULTIPLY_FACTOR_XS_MASK | DIVIDE_FACTOR_XS_MASK); srcomp_value |= (mul_factor << MULTIPLY_FACTOR_XS_SHIFT) | (div_factor << DIVIDE_FACTOR_XS_SHIFT); writel(srcomp_value, (*ctrl)->control_srcomp_east_side_wkup); for (i = 0; i < 4; i++) { srcomp_value = readl((*ctrl)->control_srcomp_north_side + i*4); srcomp_value |= SRCODE_OVERRIDE_SEL_XS_MASK; writel(srcomp_value, (*ctrl)->control_srcomp_north_side + i*4); srcomp_value = readl((*ctrl)->control_srcomp_north_side + i*4); srcomp_value &= ~OVERRIDE_XS_MASK; writel(srcomp_value, (*ctrl)->control_srcomp_north_side + i*4); } srcomp_value = readl((*ctrl)->control_srcomp_east_side_wkup); srcomp_value |= SRCODE_OVERRIDE_SEL_XS_MASK; writel(srcomp_value, (*ctrl)->control_srcomp_east_side_wkup); srcomp_value = readl((*ctrl)->control_srcomp_east_side_wkup); srcomp_value &= ~OVERRIDE_XS_MASK; writel(srcomp_value, (*ctrl)->control_srcomp_east_side_wkup); clk_val = readl((*prcm)->cm_coreaon_io_srcomp_clkctrl); clk_val |= OPTFCLKEN_SRCOMP_FCLK_MASK; writel(clk_val, (*prcm)->cm_coreaon_io_srcomp_clkctrl); clk_val = readl((*prcm)->cm_wkupaon_io_srcomp_clkctrl); clk_val |= OPTFCLKEN_SRCOMP_FCLK_MASK; writel(clk_val, (*prcm)->cm_wkupaon_io_srcomp_clkctrl); for (i = 0; i < 4; i++) { while (((readl((*ctrl)->control_srcomp_north_side + i*4) & SRCODE_READ_XS_MASK) >> SRCODE_READ_XS_SHIFT) == 0) ; srcomp_value = readl((*ctrl)->control_srcomp_north_side + i*4); srcomp_value &= ~SRCODE_OVERRIDE_SEL_XS_MASK; writel(srcomp_value, (*ctrl)->control_srcomp_north_side + i*4); } while (((readl((*ctrl)->control_srcomp_east_side_wkup) & SRCODE_READ_XS_MASK) >> SRCODE_READ_XS_SHIFT) == 0) ; srcomp_value = readl((*ctrl)->control_srcomp_east_side_wkup); srcomp_value &= ~SRCODE_OVERRIDE_SEL_XS_MASK; writel(srcomp_value, (*ctrl)->control_srcomp_east_side_wkup); } } #endif void config_data_eye_leveling_samples(u32 emif_base) { const struct ctrl_ioregs *ioregs; get_ioregs(&ioregs); /*EMIF_SDRAM_CONFIG_EXT-Read data eye leveling no of samples =4*/ if (emif_base == EMIF1_BASE) writel(ioregs->ctrl_emif_sdram_config_ext_final, (*ctrl)->control_emif1_sdram_config_ext); else if (emif_base == EMIF2_BASE) writel(ioregs->ctrl_emif_sdram_config_ext_final, (*ctrl)->control_emif2_sdram_config_ext); } void init_cpu_configuration(void) { u32 l2actlr; asm volatile("mrc p15, 1, %0, c15, c0, 0" : "=r"(l2actlr)); /* * L2ACTLR: Ensure to enable the following: * 3: Disable clean/evict push to external * 4: Disable WriteUnique and WriteLineUnique transactions from master * 8: Disable DVM/CMO message broadcast */ l2actlr |= 0x118; omap_smc1(OMAP5_SERVICE_L2ACTLR_SET, l2actlr); } void init_omap_revision(void) { /* * For some of the ES2/ES1 boards ID_CODE is not reliable: * Also, ES1 and ES2 have different ARM revisions * So use ARM revision for identification */ unsigned int rev = cortex_rev(); switch (readl(CONTROL_ID_CODE)) { case OMAP5430_CONTROL_ID_CODE_ES1_0: *omap_si_rev = OMAP5430_ES1_0; if (rev == MIDR_CORTEX_A15_R2P2) *omap_si_rev = OMAP5430_ES2_0; break; case OMAP5432_CONTROL_ID_CODE_ES1_0: *omap_si_rev = OMAP5432_ES1_0; if (rev == MIDR_CORTEX_A15_R2P2) *omap_si_rev = OMAP5432_ES2_0; break; case OMAP5430_CONTROL_ID_CODE_ES2_0: *omap_si_rev = OMAP5430_ES2_0; break; case OMAP5432_CONTROL_ID_CODE_ES2_0: *omap_si_rev = OMAP5432_ES2_0; break; case DRA752_CONTROL_ID_CODE_ES1_0: *omap_si_rev = DRA752_ES1_0; break; case DRA752_CONTROL_ID_CODE_ES1_1: *omap_si_rev = DRA752_ES1_1; break; case DRA722_CONTROL_ID_CODE_ES1_0: *omap_si_rev = DRA722_ES1_0; break; default: *omap_si_rev = OMAP5430_SILICON_ID_INVALID; } init_cpu_configuration(); } void reset_cpu(ulong ignored) { u32 omap_rev = omap_revision(); /* * WARM reset is not functional in case of OMAP5430 ES1.0 soc. * So use cold reset in case instead. */ if (omap_rev == OMAP5430_ES1_0) writel(PRM_RSTCTRL_RESET << 0x1, (*prcm)->prm_rstctrl); else writel(PRM_RSTCTRL_RESET, (*prcm)->prm_rstctrl); } u32 warm_reset(void) { return readl((*prcm)->prm_rstst) & PRM_RSTST_WARM_RESET_MASK; } void setup_warmreset_time(void) { u32 rst_time, rst_val; #ifndef CONFIG_OMAP_PLATFORM_RESET_TIME_MAX_USEC rst_time = CONFIG_DEFAULT_OMAP_RESET_TIME_MAX_USEC; #else rst_time = CONFIG_OMAP_PLATFORM_RESET_TIME_MAX_USEC; #endif rst_time = usec_to_32k(rst_time) << RSTTIME1_SHIFT; if (rst_time > RSTTIME1_MASK) rst_time = RSTTIME1_MASK; rst_val = readl((*prcm)->prm_rsttime) & ~RSTTIME1_MASK; rst_val |= rst_time; writel(rst_val, (*prcm)->prm_rsttime); } void v7_arch_cp15_set_l2aux_ctrl(u32 l2auxctrl, u32 cpu_midr, u32 cpu_rev_comb, u32 cpu_variant, u32 cpu_rev) { omap_smc1(OMAP5_SERVICE_L2ACTLR_SET, l2auxctrl); } void v7_arch_cp15_set_acr(u32 acr, u32 cpu_midr, u32 cpu_rev_comb, u32 cpu_variant, u32 cpu_rev) { #ifdef CONFIG_ARM_ERRATA_801819 /* * DRA72x processors are uniprocessors and DONOT have * ACP (Accelerator Coherency Port) hooked to ACE (AXI Coherency * Extensions) Hence the erratum workaround is not applicable for * DRA72x processors. */ if (is_dra72x()) acr &= ~((0x3 << 23) | (0x3 << 25)); #endif omap_smc1(OMAP5_SERVICE_ACR_SET, acr); }