/* * Copyright 2014-2015 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MP #include #endif #include #include #include #ifdef CONFIG_FSL_ESDHC #include #endif #ifdef CONFIG_ARMV8_SEC_FIRMWARE_SUPPORT #include #endif #ifdef CONFIG_SYS_FSL_DDR #include #endif DECLARE_GLOBAL_DATA_PTR; struct mm_region *mem_map = early_map; void cpu_name(char *name) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); unsigned int i, svr, ver; svr = gur_in32(&gur->svr); ver = SVR_SOC_VER(svr); for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++) if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) { strcpy(name, cpu_type_list[i].name); if (IS_E_PROCESSOR(svr)) strcat(name, "E"); sprintf(name + strlen(name), " Rev%d.%d", SVR_MAJ(svr), SVR_MIN(svr)); break; } if (i == ARRAY_SIZE(cpu_type_list)) strcpy(name, "unknown"); } #ifndef CONFIG_SYS_DCACHE_OFF /* * To start MMU before DDR is available, we create MMU table in SRAM. * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three * levels of translation tables here to cover 40-bit address space. * We use 4KB granule size, with 40 bits physical address, T0SZ=24 * Address above EARLY_PGTABLE_SIZE (0x5000) is free for other purpose. * Note, the debug print in cache_v8.c is not usable for debugging * these early MMU tables because UART is not yet available. */ static inline void early_mmu_setup(void) { unsigned int el = current_el(); /* global data is already setup, no allocation yet */ gd->arch.tlb_addr = CONFIG_SYS_FSL_OCRAM_BASE; gd->arch.tlb_fillptr = gd->arch.tlb_addr; gd->arch.tlb_size = EARLY_PGTABLE_SIZE; /* Create early page tables */ setup_pgtables(); /* point TTBR to the new table */ set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(el, NULL, NULL) & ~(TCR_ORGN_MASK | TCR_IRGN_MASK), MEMORY_ATTRIBUTES); set_sctlr(get_sctlr() | CR_M); } /* * The final tables look similar to early tables, but different in detail. * These tables are in DRAM. Sub tables are added to enable cache for * QBMan and OCRAM. * * Put the MMU table in secure memory if gd->arch.secure_ram is valid. * OCRAM will be not used for this purpose so gd->arch.secure_ram can't be 0. */ static inline void final_mmu_setup(void) { u64 tlb_addr_save = gd->arch.tlb_addr; unsigned int el = current_el(); int index; mem_map = final_map; /* Update mapping for DDR to actual size */ for (index = 0; index < ARRAY_SIZE(final_map) - 2; index++) { /* * Find the entry for DDR mapping and update the address and * size. Zero-sized mapping will be skipped when creating MMU * table. */ switch (final_map[index].virt) { case CONFIG_SYS_FSL_DRAM_BASE1: final_map[index].virt = gd->bd->bi_dram[0].start; final_map[index].phys = gd->bd->bi_dram[0].start; final_map[index].size = gd->bd->bi_dram[0].size; break; #ifdef CONFIG_SYS_FSL_DRAM_BASE2 case CONFIG_SYS_FSL_DRAM_BASE2: #if (CONFIG_NR_DRAM_BANKS >= 2) final_map[index].virt = gd->bd->bi_dram[1].start; final_map[index].phys = gd->bd->bi_dram[1].start; final_map[index].size = gd->bd->bi_dram[1].size; #else final_map[index].size = 0; #endif break; #endif #ifdef CONFIG_SYS_FSL_DRAM_BASE3 case CONFIG_SYS_FSL_DRAM_BASE3: #if (CONFIG_NR_DRAM_BANKS >= 3) final_map[index].virt = gd->bd->bi_dram[2].start; final_map[index].phys = gd->bd->bi_dram[2].start; final_map[index].size = gd->bd->bi_dram[2].size; #else final_map[index].size = 0; #endif break; #endif default: break; } } #ifdef CONFIG_SYS_MEM_RESERVE_SECURE if (gd->arch.secure_ram & MEM_RESERVE_SECURE_MAINTAINED) { if (el == 3) { /* * Only use gd->arch.secure_ram if the address is * recalculated. Align to 4KB for MMU table. */ /* put page tables in secure ram */ index = ARRAY_SIZE(final_map) - 2; gd->arch.tlb_addr = gd->arch.secure_ram & ~0xfff; final_map[index].virt = gd->arch.secure_ram & ~0x3; final_map[index].phys = final_map[index].virt; final_map[index].size = CONFIG_SYS_MEM_RESERVE_SECURE; final_map[index].attrs = PTE_BLOCK_OUTER_SHARE; gd->arch.secure_ram |= MEM_RESERVE_SECURE_SECURED; tlb_addr_save = gd->arch.tlb_addr; } else { /* Use allocated (board_f.c) memory for TLB */ tlb_addr_save = gd->arch.tlb_allocated; gd->arch.tlb_addr = tlb_addr_save; } } #endif /* Reset the fill ptr */ gd->arch.tlb_fillptr = tlb_addr_save; /* Create normal system page tables */ setup_pgtables(); /* Create emergency page tables */ gd->arch.tlb_addr = gd->arch.tlb_fillptr; gd->arch.tlb_emerg = gd->arch.tlb_addr; setup_pgtables(); gd->arch.tlb_addr = tlb_addr_save; /* flush new MMU table */ flush_dcache_range(gd->arch.tlb_addr, gd->arch.tlb_addr + gd->arch.tlb_size); /* point TTBR to the new table */ set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(el, NULL, NULL), MEMORY_ATTRIBUTES); /* * EL3 MMU is already enabled, just need to invalidate TLB to load the * new table. The new table is compatible with the current table, if * MMU somehow walks through the new table before invalidation TLB, * it still works. So we don't need to turn off MMU here. * When EL2 MMU table is created by calling this function, MMU needs * to be enabled. */ set_sctlr(get_sctlr() | CR_M); } u64 get_page_table_size(void) { return 0x10000; } int arch_cpu_init(void) { icache_enable(); __asm_invalidate_dcache_all(); __asm_invalidate_tlb_all(); early_mmu_setup(); set_sctlr(get_sctlr() | CR_C); return 0; } void mmu_setup(void) { final_mmu_setup(); } /* * This function is called from common/board_r.c. * It recreates MMU table in main memory. */ void enable_caches(void) { mmu_setup(); __asm_invalidate_tlb_all(); icache_enable(); dcache_enable(); } #endif u32 initiator_type(u32 cluster, int init_id) { struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK; u32 type = 0; type = gur_in32(&gur->tp_ityp[idx]); if (type & TP_ITYP_AV) return type; return 0; } u32 cpu_pos_mask(void) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); int i = 0; u32 cluster, type, mask = 0; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { type = initiator_type(cluster, j); if (type && (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)) mask |= 1 << (i * TP_INIT_PER_CLUSTER + j); } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return mask; } u32 cpu_mask(void) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); int i = 0, count = 0; u32 cluster, type, mask = 0; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { type = initiator_type(cluster, j); if (type) { if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM) mask |= 1 << count; count++; } } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return mask; } /* * Return the number of cores on this SOC. */ int cpu_numcores(void) { return hweight32(cpu_mask()); } int fsl_qoriq_core_to_cluster(unsigned int core) { struct ccsr_gur __iomem *gur = (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR); int i = 0, count = 0; u32 cluster; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { if (initiator_type(cluster, j)) { if (count == core) return i; count++; } } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return -1; /* cannot identify the cluster */ } u32 fsl_qoriq_core_to_type(unsigned int core) { struct ccsr_gur __iomem *gur = (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR); int i = 0, count = 0; u32 cluster, type; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { type = initiator_type(cluster, j); if (type) { if (count == core) return type; count++; } } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return -1; /* cannot identify the cluster */ } #ifndef CONFIG_FSL_LSCH3 uint get_svr(void) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); return gur_in32(&gur->svr); } #endif #ifdef CONFIG_DISPLAY_CPUINFO int print_cpuinfo(void) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); struct sys_info sysinfo; char buf[32]; unsigned int i, core; u32 type, rcw, svr = gur_in32(&gur->svr); puts("SoC: "); cpu_name(buf); printf(" %s (0x%x)\n", buf, svr); memset((u8 *)buf, 0x00, ARRAY_SIZE(buf)); get_sys_info(&sysinfo); puts("Clock Configuration:"); for_each_cpu(i, core, cpu_numcores(), cpu_mask()) { if (!(i % 3)) puts("\n "); type = TP_ITYP_VER(fsl_qoriq_core_to_type(core)); printf("CPU%d(%s):%-4s MHz ", core, type == TY_ITYP_VER_A7 ? "A7 " : (type == TY_ITYP_VER_A53 ? "A53" : (type == TY_ITYP_VER_A57 ? "A57" : (type == TY_ITYP_VER_A72 ? "A72" : " "))), strmhz(buf, sysinfo.freq_processor[core])); } /* Display platform clock as Bus frequency. */ printf("\n Bus: %-4s MHz ", strmhz(buf, sysinfo.freq_systembus / CONFIG_SYS_FSL_PCLK_DIV)); printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus)); #ifdef CONFIG_SYS_DPAA_FMAN printf(" FMAN: %-4s MHz", strmhz(buf, sysinfo.freq_fman[0])); #endif #ifdef CONFIG_SYS_FSL_HAS_DP_DDR if (soc_has_dp_ddr()) { printf(" DP-DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus2)); } #endif puts("\n"); /* * Display the RCW, so that no one gets confused as to what RCW * we're actually using for this boot. */ puts("Reset Configuration Word (RCW):"); for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) { rcw = gur_in32(&gur->rcwsr[i]); if ((i % 4) == 0) printf("\n %08x:", i * 4); printf(" %08x", rcw); } puts("\n"); return 0; } #endif #ifdef CONFIG_FSL_ESDHC int cpu_mmc_init(bd_t *bis) { return fsl_esdhc_mmc_init(bis); } #endif int cpu_eth_init(bd_t *bis) { int error = 0; #ifdef CONFIG_FSL_MC_ENET error = fsl_mc_ldpaa_init(bis); #endif #ifdef CONFIG_FMAN_ENET fm_standard_init(bis); #endif return error; } int arch_early_init_r(void) { #ifdef CONFIG_MP int rv = 1; u32 psci_ver = 0xffffffff; #endif #ifdef CONFIG_SYS_FSL_ERRATUM_A009635 erratum_a009635(); #endif #if defined(CONFIG_SYS_FSL_ERRATUM_A009942) && defined(CONFIG_SYS_FSL_DDR) erratum_a009942_check_cpo(); #endif #ifdef CONFIG_MP #if defined(CONFIG_ARMV8_SEC_FIRMWARE_SUPPORT) && \ defined(CONFIG_SEC_FIRMWARE_ARMV8_PSCI) /* Check the psci version to determine if the psci is supported */ psci_ver = sec_firmware_support_psci_version(); #endif if (psci_ver == 0xffffffff) { rv = fsl_layerscape_wake_seconday_cores(); if (rv) printf("Did not wake secondary cores\n"); } #endif #ifdef CONFIG_SYS_HAS_SERDES fsl_serdes_init(); #endif #ifdef CONFIG_FMAN_ENET fman_enet_init(); #endif return 0; } int timer_init(void) { u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR; #ifdef CONFIG_FSL_LSCH3 u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR; #endif #ifdef CONFIG_LS2080A u32 __iomem *pctbenr = (u32 *)FSL_PMU_PCTBENR_OFFSET; u32 svr_dev_id; #endif #ifdef COUNTER_FREQUENCY_REAL unsigned long cntfrq = COUNTER_FREQUENCY_REAL; /* Update with accurate clock frequency */ asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory"); #endif #ifdef CONFIG_FSL_LSCH3 /* Enable timebase for all clusters. * It is safe to do so even some clusters are not enabled. */ out_le32(cltbenr, 0xf); #endif #ifdef CONFIG_LS2080A /* * In certain Layerscape SoCs, the clock for each core's * has an enable bit in the PMU Physical Core Time Base Enable * Register (PCTBENR), which allows the watchdog to operate. */ setbits_le32(pctbenr, 0xff); /* * For LS2080A SoC and its personalities, timer controller * offset is different */ svr_dev_id = get_svr() >> 16; if (svr_dev_id == SVR_DEV_LS2080A) cntcr = (u32 *)SYS_FSL_LS2080A_LS2085A_TIMER_ADDR; #endif /* Enable clock for timer * This is a global setting. */ out_le32(cntcr, 0x1); return 0; } __efi_runtime_data u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR; void __efi_runtime reset_cpu(ulong addr) { u32 val; /* Raise RESET_REQ_B */ val = scfg_in32(rstcr); val |= 0x02; scfg_out32(rstcr, val); } #ifdef CONFIG_EFI_LOADER void __efi_runtime EFIAPI efi_reset_system( enum efi_reset_type reset_type, efi_status_t reset_status, unsigned long data_size, void *reset_data) { switch (reset_type) { case EFI_RESET_COLD: case EFI_RESET_WARM: reset_cpu(0); break; case EFI_RESET_SHUTDOWN: /* Nothing we can do */ break; } while (1) { } } void efi_reset_system_init(void) { efi_add_runtime_mmio(&rstcr, sizeof(*rstcr)); } #endif phys_size_t board_reserve_ram_top(phys_size_t ram_size) { phys_size_t ram_top = ram_size; #ifdef CONFIG_FSL_MC_ENET /* The start address of MC reserved memory needs to be aligned. */ ram_top -= mc_get_dram_block_size(); ram_top &= ~(CONFIG_SYS_MC_RSV_MEM_ALIGN - 1); #endif return ram_size - ram_top; } phys_size_t get_effective_memsize(void) { phys_size_t ea_size, rem = 0; /* * For ARMv8 SoCs, DDR memory is split into two or three regions. The * first region is 2GB space at 0x8000_0000. If the memory extends to * the second region (or the third region if applicable), the secure * memory and Management Complex (MC) memory should be put into the * highest region, i.e. the end of DDR memory. CONFIG_MAX_MEM_MAPPED * is set to the size of first region so U-Boot doesn't relocate itself * into higher address. Should DDR be configured to skip the first * region, this function needs to be adjusted. */ if (gd->ram_size > CONFIG_MAX_MEM_MAPPED) { ea_size = CONFIG_MAX_MEM_MAPPED; rem = gd->ram_size - ea_size; } else { ea_size = gd->ram_size; } #ifdef CONFIG_SYS_MEM_RESERVE_SECURE /* Check if we have enough space for secure memory */ if (rem > CONFIG_SYS_MEM_RESERVE_SECURE) { rem -= CONFIG_SYS_MEM_RESERVE_SECURE; } else { if (ea_size > CONFIG_SYS_MEM_RESERVE_SECURE) { ea_size -= CONFIG_SYS_MEM_RESERVE_SECURE; rem = 0; /* Presume MC requires more memory */ } else { printf("Error: No enough space for secure memory.\n"); } } #endif /* Check if we have enough memory for MC */ if (rem < board_reserve_ram_top(rem)) { /* Not enough memory in high region to reserve */ if (ea_size > board_reserve_ram_top(rem)) ea_size -= board_reserve_ram_top(rem); else printf("Error: No enough space for reserved memory.\n"); } return ea_size; } void dram_init_banksize(void) { #ifdef CONFIG_SYS_DP_DDR_BASE_PHY phys_size_t dp_ddr_size; #endif /* * gd->ram_size has the total size of DDR memory, less reserved secure * memory. The DDR extends from low region to high region(s) presuming * no hole is created with DDR configuration. gd->arch.secure_ram tracks * the location of secure memory. gd->arch.resv_ram tracks the location * of reserved memory for Management Complex (MC). */ gd->bd->bi_dram[0].start = CONFIG_SYS_SDRAM_BASE; if (gd->ram_size > CONFIG_SYS_DDR_BLOCK1_SIZE) { gd->bd->bi_dram[0].size = CONFIG_SYS_DDR_BLOCK1_SIZE; gd->bd->bi_dram[1].start = CONFIG_SYS_DDR_BLOCK2_BASE; gd->bd->bi_dram[1].size = gd->ram_size - CONFIG_SYS_DDR_BLOCK1_SIZE; #ifdef CONFIG_SYS_DDR_BLOCK3_BASE if (gd->bi_dram[1].size > CONFIG_SYS_DDR_BLOCK2_SIZE) { gd->bd->bi_dram[2].start = CONFIG_SYS_DDR_BLOCK3_BASE; gd->bd->bi_dram[2].size = gd->bd->bi_dram[1].size - CONFIG_SYS_DDR_BLOCK2_SIZE; gd->bd->bi_dram[1].size = CONFIG_SYS_DDR_BLOCK2_SIZE; } #endif } else { gd->bd->bi_dram[0].size = gd->ram_size; } #ifdef CONFIG_SYS_MEM_RESERVE_SECURE #ifdef CONFIG_SYS_DDR_BLOCK3_BASE if (gd->bd->bi_dram[2].size >= CONFIG_SYS_MEM_RESERVE_SECURE) { gd->bd->bi_dram[2].size -= CONFIG_SYS_MEM_RESERVE_SECURE; gd->arch.secure_ram = gd->bd->bi_dram[2].start + gd->bd->bi_dram[2].size; gd->arch.secure_ram |= MEM_RESERVE_SECURE_MAINTAINED; gd->ram_size -= CONFIG_SYS_MEM_RESERVE_SECURE; } else #endif { if (gd->bd->bi_dram[1].size >= CONFIG_SYS_MEM_RESERVE_SECURE) { gd->bd->bi_dram[1].size -= CONFIG_SYS_MEM_RESERVE_SECURE; gd->arch.secure_ram = gd->bd->bi_dram[1].start + gd->bd->bi_dram[1].size; gd->arch.secure_ram |= MEM_RESERVE_SECURE_MAINTAINED; gd->ram_size -= CONFIG_SYS_MEM_RESERVE_SECURE; } else if (gd->bd->bi_dram[0].size > CONFIG_SYS_MEM_RESERVE_SECURE) { gd->bd->bi_dram[0].size -= CONFIG_SYS_MEM_RESERVE_SECURE; gd->arch.secure_ram = gd->bd->bi_dram[0].start + gd->bd->bi_dram[0].size; gd->arch.secure_ram |= MEM_RESERVE_SECURE_MAINTAINED; gd->ram_size -= CONFIG_SYS_MEM_RESERVE_SECURE; } } #endif /* CONFIG_SYS_MEM_RESERVE_SECURE */ #ifdef CONFIG_FSL_MC_ENET /* Assign memory for MC */ #ifdef CONFIG_SYS_DDR_BLOCK3_BASE if (gd->bd->bi_dram[2].size >= board_reserve_ram_top(gd->bd->bi_dram[2].size)) { gd->arch.resv_ram = gd->bd->bi_dram[2].start + gd->bd->bi_dram[2].size - board_reserve_ram_top(gd->bd->bi_dram[2].size); } else #endif { if (gd->bd->bi_dram[1].size >= board_reserve_ram_top(gd->bd->bi_dram[1].size)) { gd->arch.resv_ram = gd->bd->bi_dram[1].start + gd->bd->bi_dram[1].size - board_reserve_ram_top(gd->bd->bi_dram[1].size); } else if (gd->bd->bi_dram[0].size > board_reserve_ram_top(gd->bd->bi_dram[0].size)) { gd->arch.resv_ram = gd->bd->bi_dram[0].start + gd->bd->bi_dram[0].size - board_reserve_ram_top(gd->bd->bi_dram[0].size); } } #endif /* CONFIG_FSL_MC_ENET */ #ifdef CONFIG_SYS_DP_DDR_BASE_PHY #ifdef CONFIG_SYS_DDR_BLOCK3_BASE #error "This SoC shouldn't have DP DDR" #endif if (soc_has_dp_ddr()) { /* initialize DP-DDR here */ puts("DP-DDR: "); /* * DDR controller use 0 as the base address for binding. * It is mapped to CONFIG_SYS_DP_DDR_BASE for core to access. */ dp_ddr_size = fsl_other_ddr_sdram(CONFIG_SYS_DP_DDR_BASE_PHY, CONFIG_DP_DDR_CTRL, CONFIG_DP_DDR_NUM_CTRLS, CONFIG_DP_DDR_DIMM_SLOTS_PER_CTLR, NULL, NULL, NULL); if (dp_ddr_size) { gd->bd->bi_dram[2].start = CONFIG_SYS_DP_DDR_BASE; gd->bd->bi_dram[2].size = dp_ddr_size; } else { puts("Not detected"); } } #endif } #if defined(CONFIG_EFI_LOADER) && !defined(CONFIG_SPL_BUILD) void efi_add_known_memory(void) { int i; phys_addr_t ram_start, start; phys_size_t ram_size; u64 pages; /* Add RAM */ for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { #ifdef CONFIG_SYS_DP_DDR_BASE_PHY #ifdef CONFIG_SYS_DDR_BLOCK3_BASE #error "This SoC shouldn't have DP DDR" #endif if (i == 2) continue; /* skip DP-DDR */ #endif ram_start = gd->bd->bi_dram[i].start; ram_size = gd->bd->bi_dram[i].size; #ifdef CONFIG_RESV_RAM if (gd->arch.resv_ram >= ram_start && gd->arch.resv_ram < ram_start + ram_size) ram_size = gd->arch.resv_ram - ram_start; #endif start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY, false); } } #endif