/* * Copyright (c) 2010-2013, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* Tegra SoC common clock control functions */ #include #include #include #include #include #include #include #include /* * This is our record of the current clock rate of each clock. We don't * fill all of these in since we are only really interested in clocks which * we use as parents. */ static unsigned pll_rate[CLOCK_ID_COUNT]; /* * The oscillator frequency is fixed to one of four set values. Based on this * the other clocks are set up appropriately. */ static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = { 13000000, 19200000, 12000000, 26000000, }; /* return 1 if a peripheral ID is in range */ #define clock_type_id_isvalid(id) ((id) >= 0 && \ (id) < CLOCK_TYPE_COUNT) char pllp_valid = 1; /* PLLP is set up correctly */ /* return 1 if a periphc_internal_id is in range */ #define periphc_internal_id_isvalid(id) ((id) >= 0 && \ (id) < PERIPHC_COUNT) /* number of clock outputs of a PLL */ static const u8 pll_num_clkouts[] = { 1, /* PLLC */ 1, /* PLLM */ 4, /* PLLP */ 1, /* PLLA */ 0, /* PLLU */ 0, /* PLLD */ }; int clock_get_osc_bypass(void) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 reg; reg = readl(&clkrst->crc_osc_ctrl); return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT; } /* Returns a pointer to the registers of the given pll */ static struct clk_pll *get_pll(enum clock_id clkid) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; assert(clock_id_is_pll(clkid)); return &clkrst->crc_pll[clkid]; } int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn, u32 *divp, u32 *cpcon, u32 *lfcon) { struct clk_pll *pll = get_pll(clkid); u32 data; assert(clkid != CLOCK_ID_USB); /* Safety check, adds to code size but is small */ if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB) return -1; data = readl(&pll->pll_base); *divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT; *divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT; *divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT; data = readl(&pll->pll_misc); *cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT; *lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT; return 0; } unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn, u32 divp, u32 cpcon, u32 lfcon) { struct clk_pll *pll = get_pll(clkid); u32 data; /* * We cheat by treating all PLL (except PLLU) in the same fashion. * This works only because: * - same fields are always mapped at same offsets, except DCCON * - DCCON is always 0, doesn't conflict * - M,N, P of PLLP values are ignored for PLLP */ data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT); writel(data, &pll->pll_misc); data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) | (0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT); if (clkid == CLOCK_ID_USB) data |= divp << PLLU_VCO_FREQ_SHIFT; else data |= divp << PLL_DIVP_SHIFT; writel(data, &pll->pll_base); /* calculate the stable time */ return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US; } void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source, unsigned divisor) { u32 *reg = get_periph_source_reg(periph_id); u32 value; value = readl(reg); value &= ~OUT_CLK_SOURCE_31_30_MASK; value |= source << OUT_CLK_SOURCE_31_30_SHIFT; value &= ~OUT_CLK_DIVISOR_MASK; value |= divisor << OUT_CLK_DIVISOR_SHIFT; writel(value, reg); } void clock_ll_set_source(enum periph_id periph_id, unsigned source) { u32 *reg = get_periph_source_reg(periph_id); clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK, source << OUT_CLK_SOURCE_31_30_SHIFT); } /** * Given the parent's rate and the required rate for the children, this works * out the peripheral clock divider to use, in 7.1 binary format. * * @param divider_bits number of divider bits (8 or 16) * @param parent_rate clock rate of parent clock in Hz * @param rate required clock rate for this clock * @return divider which should be used */ static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate, unsigned long rate) { u64 divider = parent_rate * 2; unsigned max_divider = 1 << divider_bits; divider += rate - 1; do_div(divider, rate); if ((s64)divider - 2 < 0) return 0; if ((s64)divider - 2 >= max_divider) return -1; return divider - 2; } int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate) { struct clk_pll *pll = get_pll(clkid); int data = 0, div = 0, offset = 0; if (!clock_id_is_pll(clkid)) return -1; if (pllout + 1 > pll_num_clkouts[clkid]) return -1; div = clk_get_divider(8, pll_rate[clkid], rate); if (div < 0) return -1; /* out2 and out4 are in the high part of the register */ if (pllout == PLL_OUT2 || pllout == PLL_OUT4) offset = 16; data = (div << PLL_OUT_RATIO_SHIFT) | PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN; clrsetbits_le32(&pll->pll_out[pllout >> 1], PLL_OUT_RATIO_MASK << offset, data << offset); return 0; } /** * Given the parent's rate and the divider in 7.1 format, this works out the * resulting peripheral clock rate. * * @param parent_rate clock rate of parent clock in Hz * @param divider which should be used in 7.1 format * @return effective clock rate of peripheral */ static unsigned long get_rate_from_divider(unsigned long parent_rate, int divider) { u64 rate; rate = (u64)parent_rate * 2; do_div(rate, divider + 2); return rate; } unsigned long clock_get_periph_rate(enum periph_id periph_id, enum clock_id parent) { u32 *reg = get_periph_source_reg(periph_id); return get_rate_from_divider(pll_rate[parent], (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT); } /** * Find the best available 7.1 format divisor given a parent clock rate and * required child clock rate. This function assumes that a second-stage * divisor is available which can divide by powers of 2 from 1 to 256. * * @param divider_bits number of divider bits (8 or 16) * @param parent_rate clock rate of parent clock in Hz * @param rate required clock rate for this clock * @param extra_div value for the second-stage divisor (not set if this * function returns -1. * @return divider which should be used, or -1 if nothing is valid * */ static int find_best_divider(unsigned divider_bits, unsigned long parent_rate, unsigned long rate, int *extra_div) { int shift; int best_divider = -1; int best_error = rate; /* try dividers from 1 to 256 and find closest match */ for (shift = 0; shift <= 8 && best_error > 0; shift++) { unsigned divided_parent = parent_rate >> shift; int divider = clk_get_divider(divider_bits, divided_parent, rate); unsigned effective_rate = get_rate_from_divider(divided_parent, divider); int error = rate - effective_rate; /* Given a valid divider, look for the lowest error */ if (divider != -1 && error < best_error) { best_error = error; *extra_div = 1 << shift; best_divider = divider; } } /* return what we found - *extra_div will already be set */ return best_divider; } /** * Adjust peripheral PLL to use the given divider and source. * * @param periph_id peripheral to adjust * @param source Source number (0-3 or 0-7) * @param mux_bits Number of mux bits (2 or 4) * @param divider Required divider in 7.1 or 15.1 format * @return 0 if ok, -1 on error (requesting a parent clock which is not valid * for this peripheral) */ static int adjust_periph_pll(enum periph_id periph_id, int source, int mux_bits, unsigned divider) { u32 *reg = get_periph_source_reg(periph_id); clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK, divider << OUT_CLK_DIVISOR_SHIFT); udelay(1); /* work out the source clock and set it */ if (source < 0) return -1; if (mux_bits == MASK_BITS_31_28) { clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK, source << OUT_CLK_SOURCE_31_28_SHIFT); } else { clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK, source << OUT_CLK_SOURCE_31_30_SHIFT); } udelay(2); return 0; } unsigned clock_adjust_periph_pll_div(enum periph_id periph_id, enum clock_id parent, unsigned rate, int *extra_div) { unsigned effective_rate; int mux_bits, divider_bits, source; int divider; int xdiv = 0; /* work out the source clock and set it */ source = get_periph_clock_source(periph_id, parent, &mux_bits, ÷r_bits); divider = find_best_divider(divider_bits, pll_rate[parent], rate, &xdiv); if (extra_div) *extra_div = xdiv; assert(divider >= 0); if (adjust_periph_pll(periph_id, source, mux_bits, divider)) return -1U; debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate, get_periph_source_reg(periph_id), readl(get_periph_source_reg(periph_id))); /* Check what we ended up with. This shouldn't matter though */ effective_rate = clock_get_periph_rate(periph_id, parent); if (extra_div) effective_rate /= *extra_div; if (rate != effective_rate) debug("Requested clock rate %u not honored (got %u)\n", rate, effective_rate); return effective_rate; } unsigned clock_start_periph_pll(enum periph_id periph_id, enum clock_id parent, unsigned rate) { unsigned effective_rate; reset_set_enable(periph_id, 1); clock_enable(periph_id); effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate, NULL); reset_set_enable(periph_id, 0); return effective_rate; } void clock_enable(enum periph_id clkid) { clock_set_enable(clkid, 1); } void clock_disable(enum periph_id clkid) { clock_set_enable(clkid, 0); } void reset_periph(enum periph_id periph_id, int us_delay) { /* Put peripheral into reset */ reset_set_enable(periph_id, 1); udelay(us_delay); /* Remove reset */ reset_set_enable(periph_id, 0); udelay(us_delay); } void reset_cmplx_set_enable(int cpu, int which, int reset) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 mask; /* Form the mask, which depends on the cpu chosen (2 or 4) */ assert(cpu >= 0 && cpu < MAX_NUM_CPU); mask = which << cpu; /* either enable or disable those reset for that CPU */ if (reset) writel(mask, &clkrst->crc_cpu_cmplx_set); else writel(mask, &clkrst->crc_cpu_cmplx_clr); } unsigned clock_get_rate(enum clock_id clkid) { struct clk_pll *pll; u32 base; u32 divm; u64 parent_rate; u64 rate; parent_rate = osc_freq[clock_get_osc_freq()]; if (clkid == CLOCK_ID_OSC) return parent_rate; pll = get_pll(clkid); base = readl(&pll->pll_base); /* Oh for bf_unpack()... */ rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT); divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT; if (clkid == CLOCK_ID_USB) divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT; else divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT; do_div(rate, divm); return rate; } /** * Set the output frequency you want for each PLL clock. * PLL output frequencies are programmed by setting their N, M and P values. * The governing equations are: * VCO = (Fi / m) * n, Fo = VCO / (2^p) * where Fo is the output frequency from the PLL. * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi) * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming * * @param n PLL feedback divider(DIVN) * @param m PLL input divider(DIVN) * @param p post divider(DIVP) * @param cpcon base PLL charge pump(CPCON) * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot * be overriden), 1 if PLL is already correct */ int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon) { u32 base_reg; u32 misc_reg; struct clk_pll *pll; pll = get_pll(clkid); base_reg = readl(&pll->pll_base); /* Set BYPASS, m, n and p to PLL_BASE */ base_reg &= ~PLL_DIVM_MASK; base_reg |= m << PLL_DIVM_SHIFT; base_reg &= ~PLL_DIVN_MASK; base_reg |= n << PLL_DIVN_SHIFT; base_reg &= ~PLL_DIVP_MASK; base_reg |= p << PLL_DIVP_SHIFT; if (clkid == CLOCK_ID_PERIPH) { /* * If the PLL is already set up, check that it is correct * and record this info for clock_verify() to check. */ if (base_reg & PLL_BASE_OVRRIDE_MASK) { base_reg |= PLL_ENABLE_MASK; if (base_reg != readl(&pll->pll_base)) pllp_valid = 0; return pllp_valid ? 1 : -1; } base_reg |= PLL_BASE_OVRRIDE_MASK; } base_reg |= PLL_BYPASS_MASK; writel(base_reg, &pll->pll_base); /* Set cpcon to PLL_MISC */ misc_reg = readl(&pll->pll_misc); misc_reg &= ~PLL_CPCON_MASK; misc_reg |= cpcon << PLL_CPCON_SHIFT; writel(misc_reg, &pll->pll_misc); /* Enable PLL */ base_reg |= PLL_ENABLE_MASK; writel(base_reg, &pll->pll_base); /* Disable BYPASS */ base_reg &= ~PLL_BYPASS_MASK; writel(base_reg, &pll->pll_base); return 0; } void clock_ll_start_uart(enum periph_id periph_id) { /* Assert UART reset and enable clock */ reset_set_enable(periph_id, 1); clock_enable(periph_id); clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */ /* wait for 2us */ udelay(2); /* De-assert reset to UART */ reset_set_enable(periph_id, 0); } #ifdef CONFIG_OF_CONTROL int clock_decode_periph_id(const void *blob, int node) { enum periph_id id; u32 cell[2]; int err; err = fdtdec_get_int_array(blob, node, "clocks", cell, ARRAY_SIZE(cell)); if (err) return -1; id = clk_id_to_periph_id(cell[1]); assert(clock_periph_id_isvalid(id)); return id; } #endif /* CONFIG_OF_CONTROL */ int clock_verify(void) { struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH); u32 reg = readl(&pll->pll_base); if (!pllp_valid) { printf("Warning: PLLP %x is not correct\n", reg); return -1; } debug("PLLP %x is correct\n", reg); return 0; } void clock_init(void) { pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY); pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH); pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL); pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC); pll_rate[CLOCK_ID_SFROM32KHZ] = 32768; pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU); debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]); debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]); debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]); debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]); debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]); /* Do any special system timer/TSC setup */ arch_timer_init(); }