/* * Copyright (c) 2011 The Chromium OS Authors. * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ /* Tegra20 Clock control functions */ #include #include #include #include #include #include #include #include /* * This is our record of the current clock rate of each clock. We don't * fill all of these in since we are only really interested in clocks which * we use as parents. */ static unsigned pll_rate[CLOCK_ID_COUNT]; /* * The oscillator frequency is fixed to one of four set values. Based on this * the other clocks are set up appropriately. */ static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = { 13000000, 19200000, 12000000, 26000000, }; /* * Clock types that we can use as a source. The Tegra20 has muxes for the * peripheral clocks, and in most cases there are four options for the clock * source. This gives us a clock 'type' and exploits what commonality exists * in the device. * * Letters are obvious, except for T which means CLK_M, and S which means the * clock derived from 32KHz. Beware that CLK_M (also called OSC in the * datasheet) and PLL_M are different things. The former is the basic * clock supplied to the SOC from an external oscillator. The latter is the * memory clock PLL. * * See definitions in clock_id in the header file. */ enum clock_type_id { CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */ CLOCK_TYPE_MCPA, /* and so on */ CLOCK_TYPE_MCPT, CLOCK_TYPE_PCM, CLOCK_TYPE_PCMT, CLOCK_TYPE_PCMT16, /* CLOCK_TYPE_PCMT with 16-bit divider */ CLOCK_TYPE_PCXTS, CLOCK_TYPE_PDCT, CLOCK_TYPE_COUNT, CLOCK_TYPE_NONE = -1, /* invalid clock type */ }; /* return 1 if a peripheral ID is in range */ #define clock_type_id_isvalid(id) ((id) >= 0 && \ (id) < CLOCK_TYPE_COUNT) char pllp_valid = 1; /* PLLP is set up correctly */ enum { CLOCK_MAX_MUX = 4 /* number of source options for each clock */ }; /* * Clock source mux for each clock type. This just converts our enum into * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS * is special as it has 5 sources. Since it also has a different number of * bits in its register for the source, we just handle it with a special * case in the code. */ #define CLK(x) CLOCK_ID_ ## x static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = { { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) }, { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) }, { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) }, { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) }, { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) }, { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) }, { CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) }, { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) }, }; /* * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is * not in the header file since it is for purely internal use - we want * callers to use the PERIPH_ID for all access to peripheral clocks to avoid * confusion bewteen PERIPH_ID_... and PERIPHC_... * * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be * confusing. * * Note to SOC vendors: perhaps define a unified numbering for peripherals and * use it for reset, clock enable, clock source/divider and even pinmuxing * if you can. */ enum periphc_internal_id { /* 0x00 */ PERIPHC_I2S1, PERIPHC_I2S2, PERIPHC_SPDIF_OUT, PERIPHC_SPDIF_IN, PERIPHC_PWM, PERIPHC_SPI1, PERIPHC_SPI2, PERIPHC_SPI3, /* 0x08 */ PERIPHC_XIO, PERIPHC_I2C1, PERIPHC_DVC_I2C, PERIPHC_TWC, PERIPHC_0c, PERIPHC_10, /* PERIPHC_SPI1, what is this really? */ PERIPHC_DISP1, PERIPHC_DISP2, /* 0x10 */ PERIPHC_CVE, PERIPHC_IDE0, PERIPHC_VI, PERIPHC_1c, PERIPHC_SDMMC1, PERIPHC_SDMMC2, PERIPHC_G3D, PERIPHC_G2D, /* 0x18 */ PERIPHC_NDFLASH, PERIPHC_SDMMC4, PERIPHC_VFIR, PERIPHC_EPP, PERIPHC_MPE, PERIPHC_MIPI, PERIPHC_UART1, PERIPHC_UART2, /* 0x20 */ PERIPHC_HOST1X, PERIPHC_21, PERIPHC_TVO, PERIPHC_HDMI, PERIPHC_24, PERIPHC_TVDAC, PERIPHC_I2C2, PERIPHC_EMC, /* 0x28 */ PERIPHC_UART3, PERIPHC_29, PERIPHC_VI_SENSOR, PERIPHC_2b, PERIPHC_2c, PERIPHC_SPI4, PERIPHC_I2C3, PERIPHC_SDMMC3, /* 0x30 */ PERIPHC_UART4, PERIPHC_UART5, PERIPHC_VDE, PERIPHC_OWR, PERIPHC_NOR, PERIPHC_CSITE, PERIPHC_COUNT, PERIPHC_NONE = -1, }; /* return 1 if a periphc_internal_id is in range */ #define periphc_internal_id_isvalid(id) ((id) >= 0 && \ (id) < PERIPHC_COUNT) /* * Clock type for each peripheral clock source. We put the name in each * record just so it is easy to match things up */ #define TYPE(name, type) type static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = { /* 0x00 */ TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT), TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT), TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT), TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM), TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS), TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT), TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT), TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT), /* 0x08 */ TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT), TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16), TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16), TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT), TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT), TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT), TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT), /* 0x10 */ TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT), TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT), TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA), TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT), TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT), TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA), TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA), /* 0x18 */ TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT), TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT), TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT), TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA), TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA), TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT), TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT), TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT), /* 0x20 */ TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA), TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT), TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT), TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT), TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16), TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT), /* 0x28 */ TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT), TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA), TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT), TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16), TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT), /* 0x30 */ TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT), TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT), TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT), TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT), TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT), TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT), }; /* * This array translates a periph_id to a periphc_internal_id * * Not present/matched up: * uint vi_sensor; _VI_SENSOR_0, 0x1A8 * SPDIF - which is both 0x08 and 0x0c * */ #define NONE(name) (-1) #define OFFSET(name, value) PERIPHC_ ## name static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = { /* Low word: 31:0 */ NONE(CPU), NONE(RESERVED1), NONE(RESERVED2), NONE(AC97), NONE(RTC), NONE(TMR), PERIPHC_UART1, PERIPHC_UART2, /* and vfir 0x68 */ /* 0x08 */ NONE(GPIO), PERIPHC_SDMMC2, NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */ PERIPHC_I2S1, PERIPHC_I2C1, PERIPHC_NDFLASH, PERIPHC_SDMMC1, PERIPHC_SDMMC4, /* 0x10 */ PERIPHC_TWC, PERIPHC_PWM, PERIPHC_I2S2, PERIPHC_EPP, PERIPHC_VI, PERIPHC_G2D, NONE(USBD), NONE(ISP), /* 0x18 */ PERIPHC_G3D, PERIPHC_IDE0, PERIPHC_DISP2, PERIPHC_DISP1, PERIPHC_HOST1X, NONE(VCP), NONE(RESERVED30), NONE(CACHE2), /* Middle word: 63:32 */ NONE(MEM), NONE(AHBDMA), NONE(APBDMA), NONE(RESERVED35), NONE(KBC), NONE(STAT_MON), NONE(PMC), NONE(FUSE), /* 0x28 */ NONE(KFUSE), NONE(SBC1), /* SBC1, 0x34, is this SPI1? */ PERIPHC_NOR, PERIPHC_SPI1, PERIPHC_SPI2, PERIPHC_XIO, PERIPHC_SPI3, PERIPHC_DVC_I2C, /* 0x30 */ NONE(DSI), PERIPHC_TVO, /* also CVE 0x40 */ PERIPHC_MIPI, PERIPHC_HDMI, PERIPHC_CSITE, PERIPHC_TVDAC, PERIPHC_I2C2, PERIPHC_UART3, /* 0x38 */ NONE(RESERVED56), PERIPHC_EMC, NONE(USB2), NONE(USB3), PERIPHC_MPE, PERIPHC_VDE, NONE(BSEA), NONE(BSEV), /* Upper word 95:64 */ NONE(SPEEDO), PERIPHC_UART4, PERIPHC_UART5, PERIPHC_I2C3, PERIPHC_SPI4, PERIPHC_SDMMC3, NONE(PCIE), PERIPHC_OWR, /* 0x48 */ NONE(AFI), NONE(CORESIGHT), NONE(RESERVED74), NONE(AVPUCQ), NONE(RESERVED76), NONE(RESERVED77), NONE(RESERVED78), NONE(RESERVED79), /* 0x50 */ NONE(RESERVED80), NONE(RESERVED81), NONE(RESERVED82), NONE(RESERVED83), NONE(IRAMA), NONE(IRAMB), NONE(IRAMC), NONE(IRAMD), /* 0x58 */ NONE(CRAM2), }; /* * Get the oscillator frequency, from the corresponding hardware configuration * field. */ enum clock_osc_freq clock_get_osc_freq(void) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 reg; reg = readl(&clkrst->crc_osc_ctrl); return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT; } int clock_get_osc_bypass(void) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 reg; reg = readl(&clkrst->crc_osc_ctrl); return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT; } /* Returns a pointer to the registers of the given pll */ static struct clk_pll *get_pll(enum clock_id clkid) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; assert(clock_id_is_pll(clkid)); return &clkrst->crc_pll[clkid]; } int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn, u32 *divp, u32 *cpcon, u32 *lfcon) { struct clk_pll *pll = get_pll(clkid); u32 data; assert(clkid != CLOCK_ID_USB); /* Safety check, adds to code size but is small */ if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB) return -1; data = readl(&pll->pll_base); *divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT; *divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT; *divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT; data = readl(&pll->pll_misc); *cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT; *lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT; return 0; } unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn, u32 divp, u32 cpcon, u32 lfcon) { struct clk_pll *pll = get_pll(clkid); u32 data; /* * We cheat by treating all PLL (except PLLU) in the same fashion. * This works only because: * - same fields are always mapped at same offsets, except DCCON * - DCCON is always 0, doesn't conflict * - M,N, P of PLLP values are ignored for PLLP */ data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT); writel(data, &pll->pll_misc); data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) | (0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT); if (clkid == CLOCK_ID_USB) data |= divp << PLLU_VCO_FREQ_SHIFT; else data |= divp << PLL_DIVP_SHIFT; writel(data, &pll->pll_base); /* calculate the stable time */ return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US; } /* return 1 if a peripheral ID is in range and valid */ static int clock_periph_id_isvalid(enum periph_id id) { if (id < PERIPH_ID_FIRST || id >= PERIPH_ID_COUNT) printf("Peripheral id %d out of range\n", id); else { switch (id) { case PERIPH_ID_RESERVED1: case PERIPH_ID_RESERVED2: case PERIPH_ID_RESERVED30: case PERIPH_ID_RESERVED35: case PERIPH_ID_RESERVED56: case PERIPH_ID_RESERVED74: case PERIPH_ID_RESERVED76: case PERIPH_ID_RESERVED77: case PERIPH_ID_RESERVED78: case PERIPH_ID_RESERVED79: case PERIPH_ID_RESERVED80: case PERIPH_ID_RESERVED81: case PERIPH_ID_RESERVED82: case PERIPH_ID_RESERVED83: case PERIPH_ID_RESERVED91: printf("Peripheral id %d is reserved\n", id); break; default: return 1; } } return 0; } /* Returns a pointer to the clock source register for a peripheral */ static u32 *get_periph_source_reg(enum periph_id periph_id) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; enum periphc_internal_id internal_id; assert(clock_periph_id_isvalid(periph_id)); internal_id = periph_id_to_internal_id[periph_id]; assert(internal_id != -1); return &clkrst->crc_clk_src[internal_id]; } void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source, unsigned divisor) { u32 *reg = get_periph_source_reg(periph_id); u32 value; value = readl(reg); value &= ~OUT_CLK_SOURCE_MASK; value |= source << OUT_CLK_SOURCE_SHIFT; value &= ~OUT_CLK_DIVISOR_MASK; value |= divisor << OUT_CLK_DIVISOR_SHIFT; writel(value, reg); } void clock_ll_set_source(enum periph_id periph_id, unsigned source) { u32 *reg = get_periph_source_reg(periph_id); clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK, source << OUT_CLK_SOURCE_SHIFT); } /** * Given the parent's rate and the required rate for the children, this works * out the peripheral clock divider to use, in 7.1 binary format. * * @param divider_bits number of divider bits (8 or 16) * @param parent_rate clock rate of parent clock in Hz * @param rate required clock rate for this clock * @return divider which should be used */ static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate, unsigned long rate) { u64 divider = parent_rate * 2; unsigned max_divider = 1 << divider_bits; divider += rate - 1; do_div(divider, rate); if ((s64)divider - 2 < 0) return 0; if ((s64)divider - 2 >= max_divider) return -1; return divider - 2; } /** * Given the parent's rate and the divider in 7.1 format, this works out the * resulting peripheral clock rate. * * @param parent_rate clock rate of parent clock in Hz * @param divider which should be used in 7.1 format * @return effective clock rate of peripheral */ static unsigned long get_rate_from_divider(unsigned long parent_rate, int divider) { u64 rate; rate = (u64)parent_rate * 2; do_div(rate, divider + 2); return rate; } unsigned long clock_get_periph_rate(enum periph_id periph_id, enum clock_id parent) { u32 *reg = get_periph_source_reg(periph_id); return get_rate_from_divider(pll_rate[parent], (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT); } /** * Find the best available 7.1 format divisor given a parent clock rate and * required child clock rate. This function assumes that a second-stage * divisor is available which can divide by powers of 2 from 1 to 256. * * @param divider_bits number of divider bits (8 or 16) * @param parent_rate clock rate of parent clock in Hz * @param rate required clock rate for this clock * @param extra_div value for the second-stage divisor (not set if this * function returns -1. * @return divider which should be used, or -1 if nothing is valid * */ static int find_best_divider(unsigned divider_bits, unsigned long parent_rate, unsigned long rate, int *extra_div) { int shift; int best_divider = -1; int best_error = rate; /* try dividers from 1 to 256 and find closest match */ for (shift = 0; shift <= 8 && best_error > 0; shift++) { unsigned divided_parent = parent_rate >> shift; int divider = clk_get_divider(divider_bits, divided_parent, rate); unsigned effective_rate = get_rate_from_divider(divided_parent, divider); int error = rate - effective_rate; /* Given a valid divider, look for the lowest error */ if (divider != -1 && error < best_error) { best_error = error; *extra_div = 1 << shift; best_divider = divider; } } /* return what we found - *extra_div will already be set */ return best_divider; } /** * Given a peripheral ID and the required source clock, this returns which * value should be programmed into the source mux for that peripheral. * * There is special code here to handle the one source type with 5 sources. * * @param periph_id peripheral to start * @param source PLL id of required parent clock * @param mux_bits Set to number of bits in mux register: 2 or 4 * @param divider_bits Set to number of divider bits (8 or 16) * @return mux value (0-4, or -1 if not found) */ static int get_periph_clock_source(enum periph_id periph_id, enum clock_id parent, int *mux_bits, int *divider_bits) { enum clock_type_id type; enum periphc_internal_id internal_id; int mux; assert(clock_periph_id_isvalid(periph_id)); internal_id = periph_id_to_internal_id[periph_id]; assert(periphc_internal_id_isvalid(internal_id)); type = clock_periph_type[internal_id]; assert(clock_type_id_isvalid(type)); /* * Special cases here for the clock with a 4-bit source mux and I2C * with its 16-bit divisor */ if (type == CLOCK_TYPE_PCXTS) *mux_bits = 4; else *mux_bits = 2; if (type == CLOCK_TYPE_PCMT16) *divider_bits = 16; else *divider_bits = 8; for (mux = 0; mux < CLOCK_MAX_MUX; mux++) if (clock_source[type][mux] == parent) return mux; /* * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS * which is not in our table. If not, then they are asking for a * source which this peripheral can't access through its mux. */ assert(type == CLOCK_TYPE_PCXTS); assert(parent == CLOCK_ID_SFROM32KHZ); if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ) return 4; /* mux value for this clock */ /* if we get here, either us or the caller has made a mistake */ printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id, parent); return -1; } /** * Adjust peripheral PLL to use the given divider and source. * * @param periph_id peripheral to adjust * @param source Source number (0-3 or 0-7) * @param mux_bits Number of mux bits (2 or 4) * @param divider Required divider in 7.1 or 15.1 format * @return 0 if ok, -1 on error (requesting a parent clock which is not valid * for this peripheral) */ static int adjust_periph_pll(enum periph_id periph_id, int source, int mux_bits, unsigned divider) { u32 *reg = get_periph_source_reg(periph_id); clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK, divider << OUT_CLK_DIVISOR_SHIFT); udelay(1); /* work out the source clock and set it */ if (source < 0) return -1; if (mux_bits == 4) { clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK, source << OUT_CLK_SOURCE4_SHIFT); } else { clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK, source << OUT_CLK_SOURCE_SHIFT); } udelay(2); return 0; } unsigned clock_adjust_periph_pll_div(enum periph_id periph_id, enum clock_id parent, unsigned rate, int *extra_div) { unsigned effective_rate; int mux_bits, divider_bits, source; int divider; /* work out the source clock and set it */ source = get_periph_clock_source(periph_id, parent, &mux_bits, ÷r_bits); if (extra_div) divider = find_best_divider(divider_bits, pll_rate[parent], rate, extra_div); else divider = clk_get_divider(divider_bits, pll_rate[parent], rate); assert(divider >= 0); if (adjust_periph_pll(periph_id, source, mux_bits, divider)) return -1U; debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate, get_periph_source_reg(periph_id), readl(get_periph_source_reg(periph_id))); /* Check what we ended up with. This shouldn't matter though */ effective_rate = clock_get_periph_rate(periph_id, parent); if (extra_div) effective_rate /= *extra_div; if (rate != effective_rate) debug("Requested clock rate %u not honored (got %u)\n", rate, effective_rate); return effective_rate; } unsigned clock_start_periph_pll(enum periph_id periph_id, enum clock_id parent, unsigned rate) { unsigned effective_rate; reset_set_enable(periph_id, 1); clock_enable(periph_id); effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate, NULL); reset_set_enable(periph_id, 0); return effective_rate; } void clock_set_enable(enum periph_id periph_id, int enable) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)]; u32 reg; /* Enable/disable the clock to this peripheral */ assert(clock_periph_id_isvalid(periph_id)); reg = readl(clk); if (enable) reg |= PERIPH_MASK(periph_id); else reg &= ~PERIPH_MASK(periph_id); writel(reg, clk); } void clock_enable(enum periph_id clkid) { clock_set_enable(clkid, 1); } void clock_disable(enum periph_id clkid) { clock_set_enable(clkid, 0); } void reset_set_enable(enum periph_id periph_id, int enable) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)]; u32 reg; /* Enable/disable reset to the peripheral */ assert(clock_periph_id_isvalid(periph_id)); reg = readl(reset); if (enable) reg |= PERIPH_MASK(periph_id); else reg &= ~PERIPH_MASK(periph_id); writel(reg, reset); } void reset_periph(enum periph_id periph_id, int us_delay) { /* Put peripheral into reset */ reset_set_enable(periph_id, 1); udelay(us_delay); /* Remove reset */ reset_set_enable(periph_id, 0); udelay(us_delay); } void reset_cmplx_set_enable(int cpu, int which, int reset) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 mask; /* Form the mask, which depends on the cpu chosen. Tegra20 has 2 */ assert(cpu >= 0 && cpu < 2); mask = which << cpu; /* either enable or disable those reset for that CPU */ if (reset) writel(mask, &clkrst->crc_cpu_cmplx_set); else writel(mask, &clkrst->crc_cpu_cmplx_clr); } unsigned clock_get_rate(enum clock_id clkid) { struct clk_pll *pll; u32 base; u32 divm; u64 parent_rate; u64 rate; parent_rate = osc_freq[clock_get_osc_freq()]; if (clkid == CLOCK_ID_OSC) return parent_rate; pll = get_pll(clkid); base = readl(&pll->pll_base); /* Oh for bf_unpack()... */ rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT); divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT; if (clkid == CLOCK_ID_USB) divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT; else divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT; do_div(rate, divm); return rate; } /** * Set the output frequency you want for each PLL clock. * PLL output frequencies are programmed by setting their N, M and P values. * The governing equations are: * VCO = (Fi / m) * n, Fo = VCO / (2^p) * where Fo is the output frequency from the PLL. * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi) * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming * * @param n PLL feedback divider(DIVN) * @param m PLL input divider(DIVN) * @param p post divider(DIVP) * @param cpcon base PLL charge pump(CPCON) * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot * be overriden), 1 if PLL is already correct */ static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon) { u32 base_reg; u32 misc_reg; struct clk_pll *pll; pll = get_pll(clkid); base_reg = readl(&pll->pll_base); /* Set BYPASS, m, n and p to PLL_BASE */ base_reg &= ~PLL_DIVM_MASK; base_reg |= m << PLL_DIVM_SHIFT; base_reg &= ~PLL_DIVN_MASK; base_reg |= n << PLL_DIVN_SHIFT; base_reg &= ~PLL_DIVP_MASK; base_reg |= p << PLL_DIVP_SHIFT; if (clkid == CLOCK_ID_PERIPH) { /* * If the PLL is already set up, check that it is correct * and record this info for clock_verify() to check. */ if (base_reg & PLL_BASE_OVRRIDE_MASK) { base_reg |= PLL_ENABLE_MASK; if (base_reg != readl(&pll->pll_base)) pllp_valid = 0; return pllp_valid ? 1 : -1; } base_reg |= PLL_BASE_OVRRIDE_MASK; } base_reg |= PLL_BYPASS_MASK; writel(base_reg, &pll->pll_base); /* Set cpcon to PLL_MISC */ misc_reg = readl(&pll->pll_misc); misc_reg &= ~PLL_CPCON_MASK; misc_reg |= cpcon << PLL_CPCON_SHIFT; writel(misc_reg, &pll->pll_misc); /* Enable PLL */ base_reg |= PLL_ENABLE_MASK; writel(base_reg, &pll->pll_base); /* Disable BYPASS */ base_reg &= ~PLL_BYPASS_MASK; writel(base_reg, &pll->pll_base); return 0; } void clock_ll_start_uart(enum periph_id periph_id) { /* Assert UART reset and enable clock */ reset_set_enable(periph_id, 1); clock_enable(periph_id); clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */ /* wait for 2us */ udelay(2); /* De-assert reset to UART */ reset_set_enable(periph_id, 0); } #ifdef CONFIG_OF_CONTROL /* * Convert a device tree clock ID to our peripheral ID. They are mostly * the same but we are very cautious so we check that a valid clock ID is * provided. * * @param clk_id Clock ID according to tegra20 device tree binding * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid */ static enum periph_id clk_id_to_periph_id(int clk_id) { if (clk_id > 95) return PERIPH_ID_NONE; switch (clk_id) { case 1: case 2: case 7: case 10: case 20: case 30: case 35: case 49: case 56: case 74: case 76: case 77: case 78: case 79: case 80: case 81: case 82: case 83: case 91: case 95: return PERIPH_ID_NONE; default: return clk_id; } } int clock_decode_periph_id(const void *blob, int node) { enum periph_id id; u32 cell[2]; int err; err = fdtdec_get_int_array(blob, node, "clocks", cell, ARRAY_SIZE(cell)); if (err) return -1; id = clk_id_to_periph_id(cell[1]); assert(clock_periph_id_isvalid(id)); return id; } #endif /* CONFIG_OF_CONTROL */ int clock_verify(void) { struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH); u32 reg = readl(&pll->pll_base); if (!pllp_valid) { printf("Warning: PLLP %x is not correct\n", reg); return -1; } debug("PLLX %x is correct\n", reg); return 0; } void clock_early_init(void) { /* * PLLP output frequency set to 216MHz * PLLC output frequency set to 600Mhz * * TODO: Can we calculate these values instead of hard-coding? */ switch (clock_get_osc_freq()) { case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */ clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8); clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8); break; case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */ clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8); clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8); break; case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */ clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8); clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8); break; case CLOCK_OSC_FREQ_19_2: default: /* * These are not supported. It is too early to print a * message and the UART likely won't work anyway due to the * oscillator being wrong. */ break; } } void clock_init(void) { pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY); pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH); pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL); pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC); pll_rate[CLOCK_ID_SFROM32KHZ] = 32768; debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]); debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]); debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]); }