// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018-2019 NXP * * Peng Fan <peng.fan@nxp.com> */ #include <common.h> #include <asm/arch/clock.h> #include <asm/arch/imx-regs.h> #include <asm/arch/sys_proto.h> #include <asm/io.h> #include <div64.h> #include <errno.h> #include <linux/bitops.h> #include <linux/delay.h> DECLARE_GLOBAL_DATA_PTR; static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR; static u32 get_root_clk(enum clk_root_index clock_id); void enable_ocotp_clk(unsigned char enable) { clock_enable(CCGR_OCOTP, !!enable); } int enable_i2c_clk(unsigned char enable, unsigned i2c_num) { /* 0 - 3 is valid i2c num */ if (i2c_num > 3) return -EINVAL; clock_enable(CCGR_I2C1 + i2c_num, !!enable); return 0; } #ifdef CONFIG_SPL_BUILD static struct imx_int_pll_rate_table imx8mm_fracpll_tbl[] = { PLL_1443X_RATE(1000000000U, 250, 3, 1, 0), PLL_1443X_RATE(800000000U, 300, 9, 0, 0), PLL_1443X_RATE(750000000U, 250, 8, 0, 0), PLL_1443X_RATE(650000000U, 325, 3, 2, 0), PLL_1443X_RATE(600000000U, 300, 3, 2, 0), PLL_1443X_RATE(594000000U, 99, 1, 2, 0), PLL_1443X_RATE(400000000U, 300, 9, 1, 0), PLL_1443X_RATE(266666667U, 400, 9, 2, 0), PLL_1443X_RATE(167000000U, 334, 3, 4, 0), PLL_1443X_RATE(100000000U, 300, 9, 3, 0), }; static int fracpll_configure(enum pll_clocks pll, u32 freq) { int i; u32 tmp, div_val; void *pll_base; struct imx_int_pll_rate_table *rate; for (i = 0; i < ARRAY_SIZE(imx8mm_fracpll_tbl); i++) { if (freq == imx8mm_fracpll_tbl[i].rate) break; } if (i == ARRAY_SIZE(imx8mm_fracpll_tbl)) { printf("No matched freq table %u\n", freq); return -EINVAL; } rate = &imx8mm_fracpll_tbl[i]; switch (pll) { case ANATOP_DRAM_PLL: setbits_le32(GPC_BASE_ADDR + 0xEC, 1 << 7); setbits_le32(GPC_BASE_ADDR + 0xF8, 1 << 5); writel(SRC_DDR1_ENABLE_MASK, SRC_BASE_ADDR + 0x1004); pll_base = &ana_pll->dram_pll_gnrl_ctl; break; case ANATOP_VIDEO_PLL: pll_base = &ana_pll->video_pll1_gnrl_ctl; break; default: return 0; } /* Bypass clock and set lock to pll output lock */ tmp = readl(pll_base); tmp |= BYPASS_MASK; writel(tmp, pll_base); /* Enable RST */ tmp &= ~RST_MASK; writel(tmp, pll_base); div_val = (rate->mdiv << MDIV_SHIFT) | (rate->pdiv << PDIV_SHIFT) | (rate->sdiv << SDIV_SHIFT); writel(div_val, pll_base + 4); writel(rate->kdiv << KDIV_SHIFT, pll_base + 8); __udelay(100); /* Disable RST */ tmp |= RST_MASK; writel(tmp, pll_base); /* Wait Lock*/ while (!(readl(pll_base) & LOCK_STATUS)) ; /* Bypass */ tmp &= ~BYPASS_MASK; writel(tmp, pll_base); return 0; } void dram_pll_init(ulong pll_val) { fracpll_configure(ANATOP_DRAM_PLL, pll_val); } static struct dram_bypass_clk_setting imx8mm_dram_bypass_tbl[] = { DRAM_BYPASS_ROOT_CONFIG(MHZ(100), 2, CLK_ROOT_PRE_DIV1, 2, CLK_ROOT_PRE_DIV2), DRAM_BYPASS_ROOT_CONFIG(MHZ(250), 3, CLK_ROOT_PRE_DIV2, 2, CLK_ROOT_PRE_DIV2), DRAM_BYPASS_ROOT_CONFIG(MHZ(400), 1, CLK_ROOT_PRE_DIV2, 3, CLK_ROOT_PRE_DIV2), }; void dram_enable_bypass(ulong clk_val) { int i; struct dram_bypass_clk_setting *config; for (i = 0; i < ARRAY_SIZE(imx8mm_dram_bypass_tbl); i++) { if (clk_val == imx8mm_dram_bypass_tbl[i].clk) break; } if (i == ARRAY_SIZE(imx8mm_dram_bypass_tbl)) { printf("No matched freq table %lu\n", clk_val); return; } config = &imx8mm_dram_bypass_tbl[i]; clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(config->alt_root_sel) | CLK_ROOT_PRE_DIV(config->alt_pre_div)); clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(config->apb_root_sel) | CLK_ROOT_PRE_DIV(config->apb_pre_div)); clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); } void dram_disable_bypass(void) { clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(4) | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV5)); } #endif int intpll_configure(enum pll_clocks pll, ulong freq) { void __iomem *pll_gnrl_ctl, __iomem *pll_div_ctl; u32 pll_div_ctl_val, pll_clke_masks; switch (pll) { case ANATOP_SYSTEM_PLL1: pll_gnrl_ctl = &ana_pll->sys_pll1_gnrl_ctl; pll_div_ctl = &ana_pll->sys_pll1_div_ctl; pll_clke_masks = INTPLL_DIV20_CLKE_MASK | INTPLL_DIV10_CLKE_MASK | INTPLL_DIV8_CLKE_MASK | INTPLL_DIV6_CLKE_MASK | INTPLL_DIV5_CLKE_MASK | INTPLL_DIV4_CLKE_MASK | INTPLL_DIV3_CLKE_MASK | INTPLL_DIV2_CLKE_MASK | INTPLL_CLKE_MASK; break; case ANATOP_SYSTEM_PLL2: pll_gnrl_ctl = &ana_pll->sys_pll2_gnrl_ctl; pll_div_ctl = &ana_pll->sys_pll2_div_ctl; pll_clke_masks = INTPLL_DIV20_CLKE_MASK | INTPLL_DIV10_CLKE_MASK | INTPLL_DIV8_CLKE_MASK | INTPLL_DIV6_CLKE_MASK | INTPLL_DIV5_CLKE_MASK | INTPLL_DIV4_CLKE_MASK | INTPLL_DIV3_CLKE_MASK | INTPLL_DIV2_CLKE_MASK | INTPLL_CLKE_MASK; break; case ANATOP_SYSTEM_PLL3: pll_gnrl_ctl = &ana_pll->sys_pll3_gnrl_ctl; pll_div_ctl = &ana_pll->sys_pll3_div_ctl; pll_clke_masks = INTPLL_CLKE_MASK; break; case ANATOP_ARM_PLL: pll_gnrl_ctl = &ana_pll->arm_pll_gnrl_ctl; pll_div_ctl = &ana_pll->arm_pll_div_ctl; pll_clke_masks = INTPLL_CLKE_MASK; break; case ANATOP_GPU_PLL: pll_gnrl_ctl = &ana_pll->gpu_pll_gnrl_ctl; pll_div_ctl = &ana_pll->gpu_pll_div_ctl; pll_clke_masks = INTPLL_CLKE_MASK; break; case ANATOP_VPU_PLL: pll_gnrl_ctl = &ana_pll->vpu_pll_gnrl_ctl; pll_div_ctl = &ana_pll->vpu_pll_div_ctl; pll_clke_masks = INTPLL_CLKE_MASK; break; default: return -EINVAL; }; switch (freq) { case MHZ(600): /* 24 * 0x12c / 3 / 2 ^ 2 */ pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0x12c) | INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(2); break; case MHZ(750): /* 24 * 0xfa / 2 / 2 ^ 2 */ pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0xfa) | INTPLL_PRE_DIV_VAL(2) | INTPLL_POST_DIV_VAL(2); break; case MHZ(800): /* 24 * 0x190 / 3 / 2 ^ 2 */ pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0x190) | INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(2); break; case MHZ(1000): /* 24 * 0xfa / 3 / 2 ^ 1 */ pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0xfa) | INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(1); break; case MHZ(1200): /* 24 * 0xc8 / 2 / 2 ^ 1 */ pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0xc8) | INTPLL_PRE_DIV_VAL(2) | INTPLL_POST_DIV_VAL(1); break; case MHZ(2000): /* 24 * 0xfa / 3 / 2 ^ 0 */ pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0xfa) | INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(0); break; default: return -EINVAL; }; /* Bypass clock and set lock to pll output lock */ setbits_le32(pll_gnrl_ctl, INTPLL_BYPASS_MASK | INTPLL_LOCK_SEL_MASK); /* Enable reset */ clrbits_le32(pll_gnrl_ctl, INTPLL_RST_MASK); /* Configure */ writel(pll_div_ctl_val, pll_div_ctl); __udelay(100); /* Disable reset */ setbits_le32(pll_gnrl_ctl, INTPLL_RST_MASK); /* Wait Lock */ while (!(readl(pll_gnrl_ctl) & INTPLL_LOCK_MASK)) ; /* Clear bypass */ clrbits_le32(pll_gnrl_ctl, INTPLL_BYPASS_MASK); setbits_le32(pll_gnrl_ctl, pll_clke_masks); return 0; } void init_uart_clk(u32 index) { /* * set uart clock root * 24M OSC */ switch (index) { case 0: clock_enable(CCGR_UART1, 0); clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_UART1, 1); return; case 1: clock_enable(CCGR_UART2, 0); clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_UART2, 1); return; case 2: clock_enable(CCGR_UART3, 0); clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_UART3, 1); return; case 3: clock_enable(CCGR_UART4, 0); clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_UART4, 1); return; default: printf("Invalid uart index\n"); return; } } void init_wdog_clk(void) { clock_enable(CCGR_WDOG1, 0); clock_enable(CCGR_WDOG2, 0); clock_enable(CCGR_WDOG3, 0); clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_WDOG1, 1); clock_enable(CCGR_WDOG2, 1); clock_enable(CCGR_WDOG3, 1); } void init_clk_usdhc(u32 index) { /* * set usdhc clock root * sys pll1 400M */ switch (index) { case 0: clock_enable(CCGR_USDHC1, 0); clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); clock_enable(CCGR_USDHC1, 1); return; case 1: clock_enable(CCGR_USDHC2, 0); clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); clock_enable(CCGR_USDHC2, 1); return; case 2: clock_enable(CCGR_USDHC3, 0); clock_set_target_val(USDHC3_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); clock_enable(CCGR_USDHC3, 1); return; default: printf("Invalid usdhc index\n"); return; } } void init_clk_ecspi(u32 index) { switch (index) { case 0: clock_enable(CCGR_ECSPI1, 0); clock_set_target_val(ECSPI1_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_ECSPI1, 1); return; case 1: clock_enable(CCGR_ECSPI2, 0); clock_set_target_val(ECSPI2_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_ECSPI2, 1); case 2: clock_enable(CCGR_ECSPI3, 0); clock_set_target_val(ECSPI3_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_ECSPI3, 1); return; default: printf("Invalid ecspi index\n"); return; } } void init_nand_clk(void) { /* * set rawnand root * sys pll1 400M */ clock_enable(CCGR_RAWNAND, 0); clock_set_target_val(NAND_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(3) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4)); /* 100M */ clock_enable(CCGR_RAWNAND, 1); } int clock_init(void) { u32 val_cfg0; /* * The gate is not exported to clk tree, so configure them here. * According to ANAMIX SPEC * sys pll1 fixed at 800MHz * sys pll2 fixed at 1GHz * Here we only enable the outputs. */ val_cfg0 = readl(&ana_pll->sys_pll1_gnrl_ctl); val_cfg0 |= INTPLL_CLKE_MASK | INTPLL_DIV2_CLKE_MASK | INTPLL_DIV3_CLKE_MASK | INTPLL_DIV4_CLKE_MASK | INTPLL_DIV5_CLKE_MASK | INTPLL_DIV6_CLKE_MASK | INTPLL_DIV8_CLKE_MASK | INTPLL_DIV10_CLKE_MASK | INTPLL_DIV20_CLKE_MASK; writel(val_cfg0, &ana_pll->sys_pll1_gnrl_ctl); val_cfg0 = readl(&ana_pll->sys_pll2_gnrl_ctl); val_cfg0 |= INTPLL_CLKE_MASK | INTPLL_DIV2_CLKE_MASK | INTPLL_DIV3_CLKE_MASK | INTPLL_DIV4_CLKE_MASK | INTPLL_DIV5_CLKE_MASK | INTPLL_DIV6_CLKE_MASK | INTPLL_DIV8_CLKE_MASK | INTPLL_DIV10_CLKE_MASK | INTPLL_DIV20_CLKE_MASK; writel(val_cfg0, &ana_pll->sys_pll2_gnrl_ctl); /* Configure ARM at 1.2GHz */ clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(2)); intpll_configure(ANATOP_ARM_PLL, MHZ(1200)); /* Bypass CCM A53 ROOT, Switch to ARM PLL -> MUX-> CPU */ clock_set_target_val(CORE_SEL_CFG, CLK_ROOT_SOURCE_SEL(1)); if (is_imx8mn() || is_imx8mp()) intpll_configure(ANATOP_SYSTEM_PLL3, MHZ(600)); else intpll_configure(ANATOP_SYSTEM_PLL3, MHZ(750)); #ifdef CONFIG_IMX8MP /* 8MP ROM already set NOC to 800Mhz, only need to configure NOC_IO clk to 600Mhz */ /* 8MP ROM already set GIC to 400Mhz, system_pll1_800m with div = 2 */ clock_set_target_val(NOC_IO_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(2)); #else clock_set_target_val(NOC_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(2)); /* config GIC to sys_pll2_100m */ clock_enable(CCGR_GIC, 0); clock_set_target_val(GIC_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(3)); clock_enable(CCGR_GIC, 1); #endif clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); clock_enable(CCGR_DDR1, 0); clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); clock_enable(CCGR_DDR1, 1); init_wdog_clk(); clock_enable(CCGR_TEMP_SENSOR, 1); clock_enable(CCGR_SEC_DEBUG, 1); return 0; }; u32 imx_get_uartclk(void) { return 24000000U; } static u32 decode_intpll(enum clk_root_src intpll) { u32 pll_gnrl_ctl, pll_div_ctl, pll_clke_mask; u32 main_div, pre_div, post_div, div; u64 freq; switch (intpll) { case ARM_PLL_CLK: pll_gnrl_ctl = readl(&ana_pll->arm_pll_gnrl_ctl); pll_div_ctl = readl(&ana_pll->arm_pll_div_ctl); break; case GPU_PLL_CLK: pll_gnrl_ctl = readl(&ana_pll->gpu_pll_gnrl_ctl); pll_div_ctl = readl(&ana_pll->gpu_pll_div_ctl); break; case VPU_PLL_CLK: pll_gnrl_ctl = readl(&ana_pll->vpu_pll_gnrl_ctl); pll_div_ctl = readl(&ana_pll->vpu_pll_div_ctl); break; case SYSTEM_PLL1_800M_CLK: case SYSTEM_PLL1_400M_CLK: case SYSTEM_PLL1_266M_CLK: case SYSTEM_PLL1_200M_CLK: case SYSTEM_PLL1_160M_CLK: case SYSTEM_PLL1_133M_CLK: case SYSTEM_PLL1_100M_CLK: case SYSTEM_PLL1_80M_CLK: case SYSTEM_PLL1_40M_CLK: pll_gnrl_ctl = readl(&ana_pll->sys_pll1_gnrl_ctl); pll_div_ctl = readl(&ana_pll->sys_pll1_div_ctl); break; case SYSTEM_PLL2_1000M_CLK: case SYSTEM_PLL2_500M_CLK: case SYSTEM_PLL2_333M_CLK: case SYSTEM_PLL2_250M_CLK: case SYSTEM_PLL2_200M_CLK: case SYSTEM_PLL2_166M_CLK: case SYSTEM_PLL2_125M_CLK: case SYSTEM_PLL2_100M_CLK: case SYSTEM_PLL2_50M_CLK: pll_gnrl_ctl = readl(&ana_pll->sys_pll2_gnrl_ctl); pll_div_ctl = readl(&ana_pll->sys_pll2_div_ctl); break; case SYSTEM_PLL3_CLK: pll_gnrl_ctl = readl(&ana_pll->sys_pll3_gnrl_ctl); pll_div_ctl = readl(&ana_pll->sys_pll3_div_ctl); break; default: return -EINVAL; } /* Only support SYS_XTAL 24M, PAD_CLK not take into consideration */ if ((pll_gnrl_ctl & INTPLL_REF_CLK_SEL_MASK) != 0) return 0; if ((pll_gnrl_ctl & INTPLL_RST_MASK) == 0) return 0; /* * When BYPASS is equal to 1, PLL enters the bypass mode * regardless of the values of RESETB */ if (pll_gnrl_ctl & INTPLL_BYPASS_MASK) return 24000000u; if (!(pll_gnrl_ctl & INTPLL_LOCK_MASK)) { puts("pll not locked\n"); return 0; } switch (intpll) { case ARM_PLL_CLK: case GPU_PLL_CLK: case VPU_PLL_CLK: case SYSTEM_PLL3_CLK: case SYSTEM_PLL1_800M_CLK: case SYSTEM_PLL2_1000M_CLK: pll_clke_mask = INTPLL_CLKE_MASK; div = 1; break; case SYSTEM_PLL1_400M_CLK: case SYSTEM_PLL2_500M_CLK: pll_clke_mask = INTPLL_DIV2_CLKE_MASK; div = 2; break; case SYSTEM_PLL1_266M_CLK: case SYSTEM_PLL2_333M_CLK: pll_clke_mask = INTPLL_DIV3_CLKE_MASK; div = 3; break; case SYSTEM_PLL1_200M_CLK: case SYSTEM_PLL2_250M_CLK: pll_clke_mask = INTPLL_DIV4_CLKE_MASK; div = 4; break; case SYSTEM_PLL1_160M_CLK: case SYSTEM_PLL2_200M_CLK: pll_clke_mask = INTPLL_DIV5_CLKE_MASK; div = 5; break; case SYSTEM_PLL1_133M_CLK: case SYSTEM_PLL2_166M_CLK: pll_clke_mask = INTPLL_DIV6_CLKE_MASK; div = 6; break; case SYSTEM_PLL1_100M_CLK: case SYSTEM_PLL2_125M_CLK: pll_clke_mask = INTPLL_DIV8_CLKE_MASK; div = 8; break; case SYSTEM_PLL1_80M_CLK: case SYSTEM_PLL2_100M_CLK: pll_clke_mask = INTPLL_DIV10_CLKE_MASK; div = 10; break; case SYSTEM_PLL1_40M_CLK: case SYSTEM_PLL2_50M_CLK: pll_clke_mask = INTPLL_DIV20_CLKE_MASK; div = 20; break; default: return -EINVAL; } if ((pll_gnrl_ctl & pll_clke_mask) == 0) return 0; main_div = (pll_div_ctl & INTPLL_MAIN_DIV_MASK) >> INTPLL_MAIN_DIV_SHIFT; pre_div = (pll_div_ctl & INTPLL_PRE_DIV_MASK) >> INTPLL_PRE_DIV_SHIFT; post_div = (pll_div_ctl & INTPLL_POST_DIV_MASK) >> INTPLL_POST_DIV_SHIFT; /* FFVCO = (m * FFIN) / p, FFOUT = (m * FFIN) / (p * 2^s) */ freq = 24000000ULL * main_div; return lldiv(freq, pre_div * (1 << post_div) * div); } static u32 decode_fracpll(enum clk_root_src frac_pll) { u32 pll_gnrl_ctl, pll_fdiv_ctl0, pll_fdiv_ctl1; u32 main_div, pre_div, post_div, k; switch (frac_pll) { case DRAM_PLL1_CLK: pll_gnrl_ctl = readl(&ana_pll->dram_pll_gnrl_ctl); pll_fdiv_ctl0 = readl(&ana_pll->dram_pll_fdiv_ctl0); pll_fdiv_ctl1 = readl(&ana_pll->dram_pll_fdiv_ctl1); break; case AUDIO_PLL1_CLK: pll_gnrl_ctl = readl(&ana_pll->audio_pll1_gnrl_ctl); pll_fdiv_ctl0 = readl(&ana_pll->audio_pll1_fdiv_ctl0); pll_fdiv_ctl1 = readl(&ana_pll->audio_pll1_fdiv_ctl1); break; case AUDIO_PLL2_CLK: pll_gnrl_ctl = readl(&ana_pll->audio_pll2_gnrl_ctl); pll_fdiv_ctl0 = readl(&ana_pll->audio_pll2_fdiv_ctl0); pll_fdiv_ctl1 = readl(&ana_pll->audio_pll2_fdiv_ctl1); break; case VIDEO_PLL_CLK: pll_gnrl_ctl = readl(&ana_pll->video_pll1_gnrl_ctl); pll_fdiv_ctl0 = readl(&ana_pll->video_pll1_fdiv_ctl0); pll_fdiv_ctl1 = readl(&ana_pll->video_pll1_fdiv_ctl1); break; default: printf("Not supported\n"); return 0; } /* Only support SYS_XTAL 24M, PAD_CLK not take into consideration */ if ((pll_gnrl_ctl & GENMASK(1, 0)) != 0) return 0; if ((pll_gnrl_ctl & RST_MASK) == 0) return 0; /* * When BYPASS is equal to 1, PLL enters the bypass mode * regardless of the values of RESETB */ if (pll_gnrl_ctl & BYPASS_MASK) return 24000000u; if (!(pll_gnrl_ctl & LOCK_STATUS)) { puts("pll not locked\n"); return 0; } if (!(pll_gnrl_ctl & CLKE_MASK)) return 0; main_div = (pll_fdiv_ctl0 & MDIV_MASK) >> MDIV_SHIFT; pre_div = (pll_fdiv_ctl0 & PDIV_MASK) >> PDIV_SHIFT; post_div = (pll_fdiv_ctl0 & SDIV_MASK) >> SDIV_SHIFT; k = pll_fdiv_ctl1 & KDIV_MASK; return lldiv((main_div * 65536 + k) * 24000000ULL, 65536 * pre_div * (1 << post_div)); } static u32 get_root_src_clk(enum clk_root_src root_src) { switch (root_src) { case OSC_24M_CLK: return 24000000u; case OSC_HDMI_CLK: return 26000000u; case OSC_32K_CLK: return 32000u; case ARM_PLL_CLK: case GPU_PLL_CLK: case VPU_PLL_CLK: case SYSTEM_PLL1_800M_CLK: case SYSTEM_PLL1_400M_CLK: case SYSTEM_PLL1_266M_CLK: case SYSTEM_PLL1_200M_CLK: case SYSTEM_PLL1_160M_CLK: case SYSTEM_PLL1_133M_CLK: case SYSTEM_PLL1_100M_CLK: case SYSTEM_PLL1_80M_CLK: case SYSTEM_PLL1_40M_CLK: case SYSTEM_PLL2_1000M_CLK: case SYSTEM_PLL2_500M_CLK: case SYSTEM_PLL2_333M_CLK: case SYSTEM_PLL2_250M_CLK: case SYSTEM_PLL2_200M_CLK: case SYSTEM_PLL2_166M_CLK: case SYSTEM_PLL2_125M_CLK: case SYSTEM_PLL2_100M_CLK: case SYSTEM_PLL2_50M_CLK: case SYSTEM_PLL3_CLK: return decode_intpll(root_src); case DRAM_PLL1_CLK: case AUDIO_PLL1_CLK: case AUDIO_PLL2_CLK: case VIDEO_PLL_CLK: return decode_fracpll(root_src); case ARM_A53_ALT_CLK: return get_root_clk(ARM_A53_CLK_ROOT); default: return 0; } return 0; } static u32 get_root_clk(enum clk_root_index clock_id) { enum clk_root_src root_src; u32 post_podf, pre_podf, root_src_clk; if (clock_root_enabled(clock_id) <= 0) return 0; if (clock_get_prediv(clock_id, &pre_podf) < 0) return 0; if (clock_get_postdiv(clock_id, &post_podf) < 0) return 0; if (clock_get_src(clock_id, &root_src) < 0) return 0; root_src_clk = get_root_src_clk(root_src); return root_src_clk / (post_podf + 1) / (pre_podf + 1); } u32 get_arm_core_clk(void) { enum clk_root_src root_src; u32 root_src_clk; if (clock_get_src(CORE_SEL_CFG, &root_src) < 0) return 0; root_src_clk = get_root_src_clk(root_src); return root_src_clk; } u32 mxc_get_clock(enum mxc_clock clk) { u32 val; switch (clk) { case MXC_ARM_CLK: return get_arm_core_clk(); case MXC_IPG_CLK: clock_get_target_val(IPG_CLK_ROOT, &val); val = val & 0x3; return get_root_clk(AHB_CLK_ROOT) / 2 / (val + 1); case MXC_CSPI_CLK: return get_root_clk(ECSPI1_CLK_ROOT); case MXC_ESDHC_CLK: return get_root_clk(USDHC1_CLK_ROOT); case MXC_ESDHC2_CLK: return get_root_clk(USDHC2_CLK_ROOT); case MXC_ESDHC3_CLK: return get_root_clk(USDHC3_CLK_ROOT); case MXC_I2C_CLK: return get_root_clk(I2C1_CLK_ROOT); case MXC_UART_CLK: return get_root_clk(UART1_CLK_ROOT); case MXC_QSPI_CLK: return get_root_clk(QSPI_CLK_ROOT); default: printf("Unsupported mxc_clock %d\n", clk); break; } return 0; } #ifdef CONFIG_DWC_ETH_QOS int set_clk_eqos(enum enet_freq type) { u32 target; u32 enet1_ref; switch (type) { case ENET_125MHZ: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK; break; case ENET_50MHZ: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK; break; case ENET_25MHZ: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK; break; default: return -EINVAL; } /* disable the clock first */ clock_enable(CCGR_QOS_ETHENET, 0); clock_enable(CCGR_SDMA2, 0); /* set enet axi clock 266Mhz */ target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(ENET_AXI_CLK_ROOT, target); target = CLK_ROOT_ON | enet1_ref | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(ENET_QOS_CLK_ROOT, target); target = CLK_ROOT_ON | ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4); clock_set_target_val(ENET_QOS_TIMER_CLK_ROOT, target); /* enable clock */ clock_enable(CCGR_QOS_ETHENET, 1); clock_enable(CCGR_SDMA2, 1); return 0; } int imx_eqos_txclk_set_rate(u32 rate) { u32 val; u32 eqos_post_div; /* disable the clock first */ clock_enable(CCGR_QOS_ETHENET, 0); clock_enable(CCGR_SDMA2, 0); switch (rate) { case 125000000: eqos_post_div = 1; break; case 25000000: eqos_post_div = 125000000 / 25000000; break; case 2500000: eqos_post_div = 125000000 / 2500000; break; default: return -EINVAL; } clock_get_target_val(ENET_QOS_CLK_ROOT, &val); val &= ~(CLK_ROOT_PRE_DIV_MASK | CLK_ROOT_POST_DIV_MASK); val |= CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(eqos_post_div - 1); clock_set_target_val(ENET_QOS_CLK_ROOT, val); /* enable clock */ clock_enable(CCGR_QOS_ETHENET, 1); clock_enable(CCGR_SDMA2, 1); return 0; } u32 imx_get_eqos_csr_clk(void) { return get_root_clk(ENET_AXI_CLK_ROOT); } #endif #ifdef CONFIG_FEC_MXC int set_clk_enet(enum enet_freq type) { u32 target; u32 enet1_ref; switch (type) { case ENET_125MHZ: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK; break; case ENET_50MHZ: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK; break; case ENET_25MHZ: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK; break; default: return -EINVAL; } /* disable the clock first */ clock_enable(CCGR_ENET1, 0); clock_enable(CCGR_SIM_ENET, 0); /* set enet axi clock 266Mhz */ target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(ENET_AXI_CLK_ROOT, target); target = CLK_ROOT_ON | enet1_ref | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(ENET_REF_CLK_ROOT, target); target = CLK_ROOT_ON | ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4); clock_set_target_val(ENET_TIMER_CLK_ROOT, target); /* enable clock */ clock_enable(CCGR_SIM_ENET, 1); clock_enable(CCGR_ENET1, 1); return 0; } #endif