// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2017-2019 NXP * * Peng Fan <peng.fan@nxp.com> */ #include <common.h> #include <cpu_func.h> #include <init.h> #include <log.h> #include <asm/arch/imx-regs.h> #include <asm/io.h> #include <asm/arch/clock.h> #include <asm/arch/sys_proto.h> #include <asm/mach-imx/hab.h> #include <asm/mach-imx/boot_mode.h> #include <asm/mach-imx/syscounter.h> #include <asm/ptrace.h> #include <asm/armv8/mmu.h> #include <dm/uclass.h> #include <efi_loader.h> #include <env.h> #include <env_internal.h> #include <errno.h> #include <fdt_support.h> #include <fsl_wdog.h> #include <imx_sip.h> #include <linux/arm-smccc.h> #include <linux/bitops.h> DECLARE_GLOBAL_DATA_PTR; #if defined(CONFIG_IMX_HAB) struct imx_sec_config_fuse_t const imx_sec_config_fuse = { .bank = 1, .word = 3, }; #endif int timer_init(void) { #ifdef CONFIG_SPL_BUILD struct sctr_regs *sctr = (struct sctr_regs *)SYSCNT_CTRL_BASE_ADDR; unsigned long freq = readl(&sctr->cntfid0); /* Update with accurate clock frequency */ asm volatile("msr cntfrq_el0, %0" : : "r" (freq) : "memory"); clrsetbits_le32(&sctr->cntcr, SC_CNTCR_FREQ0 | SC_CNTCR_FREQ1, SC_CNTCR_FREQ0 | SC_CNTCR_ENABLE | SC_CNTCR_HDBG); #endif gd->arch.tbl = 0; gd->arch.tbu = 0; return 0; } void enable_tzc380(void) { struct iomuxc_gpr_base_regs *gpr = (struct iomuxc_gpr_base_regs *)IOMUXC_GPR_BASE_ADDR; /* Enable TZASC and lock setting */ setbits_le32(&gpr->gpr[10], GPR_TZASC_EN); setbits_le32(&gpr->gpr[10], GPR_TZASC_EN_LOCK); if (is_imx8mm() || is_imx8mn() || is_imx8mp()) setbits_le32(&gpr->gpr[10], BIT(1)); /* * set Region 0 attribute to allow secure and non-secure * read/write permission. Found some masters like usb dwc3 * controllers can't work with secure memory. */ writel(0xf0000000, TZASC_BASE_ADDR + 0x108); } void set_wdog_reset(struct wdog_regs *wdog) { /* * Output WDOG_B signal to reset external pmic or POR_B decided by * the board design. Without external reset, the peripherals/DDR/ * PMIC are not reset, that may cause system working abnormal. * WDZST bit is write-once only bit. Align this bit in kernel, * otherwise kernel code will have no chance to set this bit. */ setbits_le16(&wdog->wcr, WDOG_WDT_MASK | WDOG_WDZST_MASK); } static struct mm_region imx8m_mem_map[] = { { /* ROM */ .virt = 0x0UL, .phys = 0x0UL, .size = 0x100000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE }, { /* CAAM */ .virt = 0x100000UL, .phys = 0x100000UL, .size = 0x8000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* TCM */ .virt = 0x7C0000UL, .phys = 0x7C0000UL, .size = 0x80000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* OCRAM */ .virt = 0x900000UL, .phys = 0x900000UL, .size = 0x200000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE }, { /* AIPS */ .virt = 0xB00000UL, .phys = 0xB00000UL, .size = 0x3f500000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* DRAM1 */ .virt = 0x40000000UL, .phys = 0x40000000UL, .size = PHYS_SDRAM_SIZE, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE #ifdef PHYS_SDRAM_2_SIZE }, { /* DRAM2 */ .virt = 0x100000000UL, .phys = 0x100000000UL, .size = PHYS_SDRAM_2_SIZE, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE #endif }, { /* empty entrie to split table entry 5 if needed when TEEs are used */ 0, }, { /* List terminator */ 0, } }; struct mm_region *mem_map = imx8m_mem_map; void enable_caches(void) { /* If OPTEE runs, remove OPTEE memory from MMU table to avoid speculative prefetch */ if (rom_pointer[1]) { /* * TEE are loaded, So the ddr bank structures * have been modified update mmu table accordingly */ int i = 0; /* * please make sure that entry initial value matches * imx8m_mem_map for DRAM1 */ int entry = 5; u64 attrs = imx8m_mem_map[entry].attrs; while (i < CONFIG_NR_DRAM_BANKS && entry < 8) { if (gd->bd->bi_dram[i].start == 0) break; imx8m_mem_map[entry].phys = gd->bd->bi_dram[i].start; imx8m_mem_map[entry].virt = gd->bd->bi_dram[i].start; imx8m_mem_map[entry].size = gd->bd->bi_dram[i].size; imx8m_mem_map[entry].attrs = attrs; debug("Added memory mapping (%d): %llx %llx\n", entry, imx8m_mem_map[entry].phys, imx8m_mem_map[entry].size); i++; entry++; } } icache_enable(); dcache_enable(); } __weak int board_phys_sdram_size(phys_size_t *size) { if (!size) return -EINVAL; *size = PHYS_SDRAM_SIZE; return 0; } int dram_init(void) { phys_size_t sdram_size; int ret; ret = board_phys_sdram_size(&sdram_size); if (ret) return ret; /* rom_pointer[1] contains the size of TEE occupies */ if (rom_pointer[1]) gd->ram_size = sdram_size - rom_pointer[1]; else gd->ram_size = sdram_size; #ifdef PHYS_SDRAM_2_SIZE gd->ram_size += PHYS_SDRAM_2_SIZE; #endif return 0; } int dram_init_banksize(void) { int bank = 0; int ret; phys_size_t sdram_size; ret = board_phys_sdram_size(&sdram_size); if (ret) return ret; gd->bd->bi_dram[bank].start = PHYS_SDRAM; if (rom_pointer[1]) { phys_addr_t optee_start = (phys_addr_t)rom_pointer[0]; phys_size_t optee_size = (size_t)rom_pointer[1]; gd->bd->bi_dram[bank].size = optee_start - gd->bd->bi_dram[bank].start; if ((optee_start + optee_size) < (PHYS_SDRAM + sdram_size)) { if (++bank >= CONFIG_NR_DRAM_BANKS) { puts("CONFIG_NR_DRAM_BANKS is not enough\n"); return -1; } gd->bd->bi_dram[bank].start = optee_start + optee_size; gd->bd->bi_dram[bank].size = PHYS_SDRAM + sdram_size - gd->bd->bi_dram[bank].start; } } else { gd->bd->bi_dram[bank].size = sdram_size; } #ifdef PHYS_SDRAM_2_SIZE if (++bank >= CONFIG_NR_DRAM_BANKS) { puts("CONFIG_NR_DRAM_BANKS is not enough for SDRAM_2\n"); return -1; } gd->bd->bi_dram[bank].start = PHYS_SDRAM_2; gd->bd->bi_dram[bank].size = PHYS_SDRAM_2_SIZE; #endif return 0; } phys_size_t get_effective_memsize(void) { /* return the first bank as effective memory */ if (rom_pointer[1]) return ((phys_addr_t)rom_pointer[0] - PHYS_SDRAM); #ifdef PHYS_SDRAM_2_SIZE return gd->ram_size - PHYS_SDRAM_2_SIZE; #else return gd->ram_size; #endif } static u32 get_cpu_variant_type(u32 type) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[1]; struct fuse_bank1_regs *fuse = (struct fuse_bank1_regs *)bank->fuse_regs; u32 value = readl(&fuse->tester4); if (type == MXC_CPU_IMX8MQ) { if ((value & 0x3) == 0x2) return MXC_CPU_IMX8MD; else if (value & 0x200000) return MXC_CPU_IMX8MQL; } else if (type == MXC_CPU_IMX8MM) { switch (value & 0x3) { case 2: if (value & 0x1c0000) return MXC_CPU_IMX8MMDL; else return MXC_CPU_IMX8MMD; case 3: if (value & 0x1c0000) return MXC_CPU_IMX8MMSL; else return MXC_CPU_IMX8MMS; default: if (value & 0x1c0000) return MXC_CPU_IMX8MML; break; } } else if (type == MXC_CPU_IMX8MN) { switch (value & 0x3) { case 2: if (value & 0x1000000) return MXC_CPU_IMX8MNDL; else return MXC_CPU_IMX8MND; case 3: if (value & 0x1000000) return MXC_CPU_IMX8MNSL; else return MXC_CPU_IMX8MNS; default: if (value & 0x1000000) return MXC_CPU_IMX8MNL; break; } } else if (type == MXC_CPU_IMX8MP) { u32 value0 = readl(&fuse->tester3); u32 flag = 0; if ((value0 & 0xc0000) == 0x80000) return MXC_CPU_IMX8MPD; /* vpu disabled */ if ((value0 & 0x43000000) == 0x43000000) flag = 1; /* npu disabled*/ if ((value & 0x8) == 0x8) flag |= (1 << 1); /* isp disabled */ if ((value & 0x3) == 0x3) flag |= (1 << 2); switch (flag) { case 7: return MXC_CPU_IMX8MPL; case 2: return MXC_CPU_IMX8MP6; default: break; } } return type; } u32 get_cpu_rev(void) { struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR; u32 reg = readl(&ana_pll->digprog); u32 type = (reg >> 16) & 0xff; u32 major_low = (reg >> 8) & 0xff; u32 rom_version; reg &= 0xff; /* iMX8MP */ if (major_low == 0x43) { type = get_cpu_variant_type(MXC_CPU_IMX8MP); } else if (major_low == 0x42) { /* iMX8MN */ type = get_cpu_variant_type(MXC_CPU_IMX8MN); } else if (major_low == 0x41) { type = get_cpu_variant_type(MXC_CPU_IMX8MM); } else { if (reg == CHIP_REV_1_0) { /* * For B0 chip, the DIGPROG is not updated, * it is still TO1.0. we have to check ROM * version or OCOTP_READ_FUSE_DATA. * 0xff0055aa is magic number for B1. */ if (readl((void __iomem *)(OCOTP_BASE_ADDR + 0x40)) == 0xff0055aa) { reg = CHIP_REV_2_1; } else { rom_version = readl((void __iomem *)ROM_VERSION_A0); if (rom_version != CHIP_REV_1_0) { rom_version = readl((void __iomem *)ROM_VERSION_B0); rom_version &= 0xff; if (rom_version == CHIP_REV_2_0) reg = CHIP_REV_2_0; } } } type = get_cpu_variant_type(type); } return (type << 12) | reg; } static void imx_set_wdog_powerdown(bool enable) { struct wdog_regs *wdog1 = (struct wdog_regs *)WDOG1_BASE_ADDR; struct wdog_regs *wdog2 = (struct wdog_regs *)WDOG2_BASE_ADDR; struct wdog_regs *wdog3 = (struct wdog_regs *)WDOG3_BASE_ADDR; /* Write to the PDE (Power Down Enable) bit */ writew(enable, &wdog1->wmcr); writew(enable, &wdog2->wmcr); writew(enable, &wdog3->wmcr); } int arch_cpu_init_dm(void) { struct udevice *dev; int ret; if (CONFIG_IS_ENABLED(CLK)) { ret = uclass_get_device_by_name(UCLASS_CLK, "clock-controller@30380000", &dev); if (ret < 0) { printf("Failed to find clock node. Check device tree\n"); return ret; } } return 0; } int arch_cpu_init(void) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; /* * ROM might disable clock for SCTR, * enable the clock before timer_init. */ if (IS_ENABLED(CONFIG_SPL_BUILD)) clock_enable(CCGR_SCTR, 1); /* * Init timer at very early state, because sscg pll setting * will use it */ timer_init(); if (IS_ENABLED(CONFIG_SPL_BUILD)) { clock_init(); imx_set_wdog_powerdown(false); if (is_imx8md() || is_imx8mmd() || is_imx8mmdl() || is_imx8mms() || is_imx8mmsl() || is_imx8mnd() || is_imx8mndl() || is_imx8mns() || is_imx8mnsl() || is_imx8mpd()) { /* Power down cpu core 1, 2 and 3 for iMX8M Dual core or Single core */ struct pgc_reg *pgc_core1 = (struct pgc_reg *)(GPC_BASE_ADDR + 0x840); struct pgc_reg *pgc_core2 = (struct pgc_reg *)(GPC_BASE_ADDR + 0x880); struct pgc_reg *pgc_core3 = (struct pgc_reg *)(GPC_BASE_ADDR + 0x8C0); struct gpc_reg *gpc = (struct gpc_reg *)GPC_BASE_ADDR; writel(0x1, &pgc_core2->pgcr); writel(0x1, &pgc_core3->pgcr); if (is_imx8mms() || is_imx8mmsl() || is_imx8mns() || is_imx8mnsl()) { writel(0x1, &pgc_core1->pgcr); writel(0xE, &gpc->cpu_pgc_dn_trg); } else { writel(0xC, &gpc->cpu_pgc_dn_trg); } } } if (is_imx8mq()) { clock_enable(CCGR_OCOTP, 1); if (readl(&ocotp->ctrl) & 0x200) writel(0x200, &ocotp->ctrl_clr); } return 0; } #if defined(CONFIG_IMX8MN) || defined(CONFIG_IMX8MP) struct rom_api *g_rom_api = (struct rom_api *)0x980; enum boot_device get_boot_device(void) { volatile gd_t *pgd = gd; int ret; u32 boot; u16 boot_type; u8 boot_instance; enum boot_device boot_dev = SD1_BOOT; ret = g_rom_api->query_boot_infor(QUERY_BT_DEV, &boot, ((uintptr_t)&boot) ^ QUERY_BT_DEV); gd = pgd; if (ret != ROM_API_OKAY) { puts("ROMAPI: failure at query_boot_info\n"); return -1; } boot_type = boot >> 16; boot_instance = (boot >> 8) & 0xff; switch (boot_type) { case BT_DEV_TYPE_SD: boot_dev = boot_instance + SD1_BOOT; break; case BT_DEV_TYPE_MMC: boot_dev = boot_instance + MMC1_BOOT; break; case BT_DEV_TYPE_NAND: boot_dev = NAND_BOOT; break; case BT_DEV_TYPE_FLEXSPINOR: boot_dev = QSPI_BOOT; break; case BT_DEV_TYPE_USB: boot_dev = USB_BOOT; break; default: break; } return boot_dev; } #endif bool is_usb_boot(void) { return get_boot_device() == USB_BOOT; } #ifdef CONFIG_OF_SYSTEM_SETUP bool check_fdt_new_path(void *blob) { const char *soc_path = "/soc@0"; int nodeoff; nodeoff = fdt_path_offset(blob, soc_path); if (nodeoff < 0) return false; return true; } static int disable_fdt_nodes(void *blob, const char *const nodes_path[], int size_array) { int i = 0; int rc; int nodeoff; const char *status = "disabled"; for (i = 0; i < size_array; i++) { nodeoff = fdt_path_offset(blob, nodes_path[i]); if (nodeoff < 0) continue; /* Not found, skip it */ printf("Found %s node\n", nodes_path[i]); add_status: rc = fdt_setprop(blob, nodeoff, "status", status, strlen(status) + 1); if (rc) { if (rc == -FDT_ERR_NOSPACE) { rc = fdt_increase_size(blob, 512); if (!rc) goto add_status; } printf("Unable to update property %s:%s, err=%s\n", nodes_path[i], "status", fdt_strerror(rc)); } else { printf("Modify %s:%s disabled\n", nodes_path[i], "status"); } } return 0; } #ifdef CONFIG_IMX8MQ bool check_dcss_fused(void) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[1]; struct fuse_bank1_regs *fuse = (struct fuse_bank1_regs *)bank->fuse_regs; u32 value = readl(&fuse->tester4); if (value & 0x4000000) return true; return false; } static int disable_mipi_dsi_nodes(void *blob) { static const char * const nodes_path[] = { "/mipi_dsi@30A00000", "/mipi_dsi_bridge@30A00000", "/dsi_phy@30A00300", "/soc@0/bus@30800000/mipi_dsi@30a00000", "/soc@0/bus@30800000/dphy@30a00300" }; return disable_fdt_nodes(blob, nodes_path, ARRAY_SIZE(nodes_path)); } static int disable_dcss_nodes(void *blob) { static const char * const nodes_path[] = { "/dcss@0x32e00000", "/dcss@32e00000", "/hdmi@32c00000", "/hdmi_cec@32c33800", "/hdmi_drm@32c00000", "/display-subsystem", "/sound-hdmi", "/sound-hdmi-arc", "/soc@0/bus@32c00000/display-controller@32e00000", "/soc@0/bus@32c00000/hdmi@32c00000", }; return disable_fdt_nodes(blob, nodes_path, ARRAY_SIZE(nodes_path)); } static int check_mipi_dsi_nodes(void *blob) { static const char * const lcdif_path[] = { "/lcdif@30320000", "/soc@0/bus@30000000/lcdif@30320000" }; static const char * const mipi_dsi_path[] = { "/mipi_dsi@30A00000", "/soc@0/bus@30800000/mipi_dsi@30a00000" }; static const char * const lcdif_ep_path[] = { "/lcdif@30320000/port@0/mipi-dsi-endpoint", "/soc@0/bus@30000000/lcdif@30320000/port@0/endpoint" }; static const char * const mipi_dsi_ep_path[] = { "/mipi_dsi@30A00000/port@1/endpoint", "/soc@0/bus@30800000/mipi_dsi@30a00000/ports/port@0/endpoint" }; int lookup_node; int nodeoff; bool new_path = check_fdt_new_path(blob); int i = new_path ? 1 : 0; nodeoff = fdt_path_offset(blob, lcdif_path[i]); if (nodeoff < 0 || !fdtdec_get_is_enabled(blob, nodeoff)) { /* * If can't find lcdif node or lcdif node is disabled, * then disable all mipi dsi, since they only can input * from DCSS */ return disable_mipi_dsi_nodes(blob); } nodeoff = fdt_path_offset(blob, mipi_dsi_path[i]); if (nodeoff < 0 || !fdtdec_get_is_enabled(blob, nodeoff)) return 0; nodeoff = fdt_path_offset(blob, lcdif_ep_path[i]); if (nodeoff < 0) { /* * If can't find lcdif endpoint, then disable all mipi dsi, * since they only can input from DCSS */ return disable_mipi_dsi_nodes(blob); } lookup_node = fdtdec_lookup_phandle(blob, nodeoff, "remote-endpoint"); nodeoff = fdt_path_offset(blob, mipi_dsi_ep_path[i]); if (nodeoff > 0 && nodeoff == lookup_node) return 0; return disable_mipi_dsi_nodes(blob); } #endif int disable_vpu_nodes(void *blob) { static const char * const nodes_path_8mq[] = { "/vpu@38300000", "/soc@0/vpu@38300000" }; static const char * const nodes_path_8mm[] = { "/vpu_g1@38300000", "/vpu_g2@38310000", "/vpu_h1@38320000" }; static const char * const nodes_path_8mp[] = { "/vpu_g1@38300000", "/vpu_g2@38310000", "/vpu_vc8000e@38320000" }; if (is_imx8mq()) return disable_fdt_nodes(blob, nodes_path_8mq, ARRAY_SIZE(nodes_path_8mq)); else if (is_imx8mm()) return disable_fdt_nodes(blob, nodes_path_8mm, ARRAY_SIZE(nodes_path_8mm)); else if (is_imx8mp()) return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp)); else return -EPERM; } int disable_gpu_nodes(void *blob) { static const char * const nodes_path_8mn[] = { "/gpu@38000000" }; return disable_fdt_nodes(blob, nodes_path_8mn, ARRAY_SIZE(nodes_path_8mn)); } int disable_npu_nodes(void *blob) { static const char * const nodes_path_8mp[] = { "/vipsi@38500000" }; return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp)); } int disable_isp_nodes(void *blob) { static const char * const nodes_path_8mp[] = { "/soc@0/bus@32c00000/camera/isp@32e10000", "/soc@0/bus@32c00000/camera/isp@32e20000" }; return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp)); } int disable_dsp_nodes(void *blob) { static const char * const nodes_path_8mp[] = { "/dsp@3b6e8000" }; return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp)); } static int disable_cpu_nodes(void *blob, u32 disabled_cores) { static const char * const nodes_path[] = { "/cpus/cpu@1", "/cpus/cpu@2", "/cpus/cpu@3", }; u32 i = 0; int rc; int nodeoff; if (disabled_cores > 3) return -EINVAL; i = 3 - disabled_cores; for (; i < 3; i++) { nodeoff = fdt_path_offset(blob, nodes_path[i]); if (nodeoff < 0) continue; /* Not found, skip it */ debug("Found %s node\n", nodes_path[i]); rc = fdt_del_node(blob, nodeoff); if (rc < 0) { printf("Unable to delete node %s, err=%s\n", nodes_path[i], fdt_strerror(rc)); } else { printf("Delete node %s\n", nodes_path[i]); } } return 0; } int ft_system_setup(void *blob, struct bd_info *bd) { #ifdef CONFIG_IMX8MQ int i = 0; int rc; int nodeoff; if (get_boot_device() == USB_BOOT) { disable_dcss_nodes(blob); bool new_path = check_fdt_new_path(blob); int v = new_path ? 1 : 0; static const char * const usb_dwc3_path[] = { "/usb@38100000/dwc3", "/soc@0/usb@38100000" }; nodeoff = fdt_path_offset(blob, usb_dwc3_path[v]); if (nodeoff >= 0) { const char *speed = "high-speed"; printf("Found %s node\n", usb_dwc3_path[v]); usb_modify_speed: rc = fdt_setprop(blob, nodeoff, "maximum-speed", speed, strlen(speed) + 1); if (rc) { if (rc == -FDT_ERR_NOSPACE) { rc = fdt_increase_size(blob, 512); if (!rc) goto usb_modify_speed; } printf("Unable to set property %s:%s, err=%s\n", usb_dwc3_path[v], "maximum-speed", fdt_strerror(rc)); } else { printf("Modify %s:%s = %s\n", usb_dwc3_path[v], "maximum-speed", speed); } } else { printf("Can't found %s node\n", usb_dwc3_path[v]); } } /* Disable the CPU idle for A0 chip since the HW does not support it */ if (is_soc_rev(CHIP_REV_1_0)) { static const char * const nodes_path[] = { "/cpus/cpu@0", "/cpus/cpu@1", "/cpus/cpu@2", "/cpus/cpu@3", }; for (i = 0; i < ARRAY_SIZE(nodes_path); i++) { nodeoff = fdt_path_offset(blob, nodes_path[i]); if (nodeoff < 0) continue; /* Not found, skip it */ debug("Found %s node\n", nodes_path[i]); rc = fdt_delprop(blob, nodeoff, "cpu-idle-states"); if (rc == -FDT_ERR_NOTFOUND) continue; if (rc) { printf("Unable to update property %s:%s, err=%s\n", nodes_path[i], "status", fdt_strerror(rc)); return rc; } debug("Remove %s:%s\n", nodes_path[i], "cpu-idle-states"); } } if (is_imx8mql()) { disable_vpu_nodes(blob); if (check_dcss_fused()) { printf("DCSS is fused\n"); disable_dcss_nodes(blob); check_mipi_dsi_nodes(blob); } } if (is_imx8md()) disable_cpu_nodes(blob, 2); #elif defined(CONFIG_IMX8MM) if (is_imx8mml() || is_imx8mmdl() || is_imx8mmsl()) disable_vpu_nodes(blob); if (is_imx8mmd() || is_imx8mmdl()) disable_cpu_nodes(blob, 2); else if (is_imx8mms() || is_imx8mmsl()) disable_cpu_nodes(blob, 3); #elif defined(CONFIG_IMX8MN) if (is_imx8mnl() || is_imx8mndl() || is_imx8mnsl()) disable_gpu_nodes(blob); if (is_imx8mnd() || is_imx8mndl()) disable_cpu_nodes(blob, 2); else if (is_imx8mns() || is_imx8mnsl()) disable_cpu_nodes(blob, 3); #elif defined(CONFIG_IMX8MP) if (is_imx8mpl()) disable_vpu_nodes(blob); if (is_imx8mpl() || is_imx8mp6()) disable_npu_nodes(blob); if (is_imx8mpl()) disable_isp_nodes(blob); if (is_imx8mpl() || is_imx8mp6()) disable_dsp_nodes(blob); if (is_imx8mpd()) disable_cpu_nodes(blob, 2); #endif return 0; } #endif #if !CONFIG_IS_ENABLED(SYSRESET) void reset_cpu(ulong addr) { struct watchdog_regs *wdog = (struct watchdog_regs *)WDOG1_BASE_ADDR; /* Clear WDA to trigger WDOG_B immediately */ writew((SET_WCR_WT(1) | WCR_WDT | WCR_WDE | WCR_SRS), &wdog->wcr); while (1) { /* * spin for .5 seconds before reset */ } } #endif #if defined(CONFIG_ARCH_MISC_INIT) static void acquire_buildinfo(void) { u64 atf_commit = 0; struct arm_smccc_res res; /* Get ARM Trusted Firmware commit id */ arm_smccc_smc(IMX_SIP_BUILDINFO, IMX_SIP_BUILDINFO_GET_COMMITHASH, 0, 0, 0, 0, 0, 0, &res); atf_commit = res.a0; if (atf_commit == 0xffffffff) { debug("ATF does not support build info\n"); atf_commit = 0x30; /* Display 0, 0 ascii is 0x30 */ } printf("\n BuildInfo:\n - ATF %s\n\n", (char *)&atf_commit); } int arch_misc_init(void) { acquire_buildinfo(); return 0; } #endif void imx_tmu_arch_init(void *reg_base) { if (is_imx8mm() || is_imx8mn()) { /* Load TCALIV and TASR from fuses */ struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[3]; struct fuse_bank3_regs *fuse = (struct fuse_bank3_regs *)bank->fuse_regs; u32 tca_rt, tca_hr, tca_en; u32 buf_vref, buf_slope; tca_rt = fuse->ana0 & 0xFF; tca_hr = (fuse->ana0 & 0xFF00) >> 8; tca_en = (fuse->ana0 & 0x2000000) >> 25; buf_vref = (fuse->ana0 & 0x1F00000) >> 20; buf_slope = (fuse->ana0 & 0xF0000) >> 16; writel(buf_vref | (buf_slope << 16), (ulong)reg_base + 0x28); writel((tca_en << 31) | (tca_hr << 16) | tca_rt, (ulong)reg_base + 0x30); } #ifdef CONFIG_IMX8MP /* Load TCALIV0/1/m40 and TRIM from fuses */ struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[38]; struct fuse_bank38_regs *fuse = (struct fuse_bank38_regs *)bank->fuse_regs; struct fuse_bank *bank2 = &ocotp->bank[39]; struct fuse_bank39_regs *fuse2 = (struct fuse_bank39_regs *)bank2->fuse_regs; u32 buf_vref, buf_slope, bjt_cur, vlsb, bgr; u32 reg; u32 tca40[2], tca25[2], tca105[2]; /* For blank sample */ if (!fuse->ana_trim2 && !fuse->ana_trim3 && !fuse->ana_trim4 && !fuse2->ana_trim5) { /* Use a default 25C binary codes */ tca25[0] = 1596; tca25[1] = 1596; writel(tca25[0], (ulong)reg_base + 0x30); writel(tca25[1], (ulong)reg_base + 0x34); return; } buf_vref = (fuse->ana_trim2 & 0xc0) >> 6; buf_slope = (fuse->ana_trim2 & 0xF00) >> 8; bjt_cur = (fuse->ana_trim2 & 0xF000) >> 12; bgr = (fuse->ana_trim2 & 0xF0000) >> 16; vlsb = (fuse->ana_trim2 & 0xF00000) >> 20; writel(buf_vref | (buf_slope << 16), (ulong)reg_base + 0x28); reg = (bgr << 28) | (bjt_cur << 20) | (vlsb << 12) | (1 << 7); writel(reg, (ulong)reg_base + 0x3c); tca40[0] = (fuse->ana_trim3 & 0xFFF0000) >> 16; tca25[0] = (fuse->ana_trim3 & 0xF0000000) >> 28; tca25[0] |= ((fuse->ana_trim4 & 0xFF) << 4); tca105[0] = (fuse->ana_trim4 & 0xFFF00) >> 8; tca40[1] = (fuse->ana_trim4 & 0xFFF00000) >> 20; tca25[1] = fuse2->ana_trim5 & 0xFFF; tca105[1] = (fuse2->ana_trim5 & 0xFFF000) >> 12; /* use 25c for 1p calibration */ writel(tca25[0] | (tca105[0] << 16), (ulong)reg_base + 0x30); writel(tca25[1] | (tca105[1] << 16), (ulong)reg_base + 0x34); writel(tca40[0] | (tca40[1] << 16), (ulong)reg_base + 0x38); #endif } #if defined(CONFIG_SPL_BUILD) #if defined(CONFIG_IMX8MQ) || defined(CONFIG_IMX8MM) || defined(CONFIG_IMX8MN) bool serror_need_skip = true; void do_error(struct pt_regs *pt_regs, unsigned int esr) { /* * If stack is still in ROM reserved OCRAM not switch to SPL, * it is the ROM SError */ ulong sp; asm volatile("mov %0, sp" : "=r"(sp) : ); if (serror_need_skip && sp < 0x910000 && sp >= 0x900000) { /* Check for ERR050342, imx8mq HDCP enabled parts */ if (is_imx8mq() && !(readl(OCOTP_BASE_ADDR + 0x450) & 0x08000000)) { serror_need_skip = false; return; /* Do nothing skip the SError in ROM */ } /* Check for ERR050350, field return mode for imx8mq, mm and mn */ if (readl(OCOTP_BASE_ADDR + 0x630) & 0x1) { serror_need_skip = false; return; /* Do nothing skip the SError in ROM */ } } efi_restore_gd(); printf("\"Error\" handler, esr 0x%08x\n", esr); show_regs(pt_regs); panic("Resetting CPU ...\n"); } #endif #endif #if defined(CONFIG_IMX8MN) || defined(CONFIG_IMX8MP) enum env_location env_get_location(enum env_operation op, int prio) { enum boot_device dev = get_boot_device(); enum env_location env_loc = ENVL_UNKNOWN; if (prio) return env_loc; switch (dev) { #ifdef CONFIG_ENV_IS_IN_SPI_FLASH case QSPI_BOOT: env_loc = ENVL_SPI_FLASH; break; #endif #ifdef CONFIG_ENV_IS_IN_NAND case NAND_BOOT: env_loc = ENVL_NAND; break; #endif #ifdef CONFIG_ENV_IS_IN_MMC case SD1_BOOT: case SD2_BOOT: case SD3_BOOT: case MMC1_BOOT: case MMC2_BOOT: case MMC3_BOOT: env_loc = ENVL_MMC; break; #endif default: #if defined(CONFIG_ENV_IS_NOWHERE) env_loc = ENVL_NOWHERE; #endif break; } return env_loc; } #ifndef ENV_IS_EMBEDDED long long env_get_offset(long long defautl_offset) { enum boot_device dev = get_boot_device(); switch (dev) { case NAND_BOOT: return (60 << 20); /* 60MB offset for NAND */ default: break; } return defautl_offset; } #endif #endif