/* * * Clock initialization for OMAP4 * * (C) Copyright 2010 * Texas Instruments, <www.ti.com> * * Aneesh V <aneesh@ti.com> * * Based on previous work by: * Santosh Shilimkar <santosh.shilimkar@ti.com> * Rajendra Nayak <rnayak@ti.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <i2c.h> #include <asm/omap_common.h> #include <asm/gpio.h> #include <asm/arch/clock.h> #include <asm/arch/sys_proto.h> #include <asm/utils.h> #include <asm/omap_gpio.h> #include <asm/emif.h> #ifndef CONFIG_SPL_BUILD /* * printing to console doesn't work unless * this code is executed from SPL */ #define printf(fmt, args...) #define puts(s) #endif const u32 sys_clk_array[8] = { 12000000, /* 12 MHz */ 20000000, /* 20 MHz */ 16800000, /* 16.8 MHz */ 19200000, /* 19.2 MHz */ 26000000, /* 26 MHz */ 27000000, /* 27 MHz */ 38400000, /* 38.4 MHz */ }; static inline u32 __get_sys_clk_index(void) { s8 ind; /* * For ES1 the ROM code calibration of sys clock is not reliable * due to hw issue. So, use hard-coded value. If this value is not * correct for any board over-ride this function in board file * From ES2.0 onwards you will get this information from * CM_SYS_CLKSEL */ if (omap_revision() == OMAP4430_ES1_0) ind = OMAP_SYS_CLK_IND_38_4_MHZ; else { /* SYS_CLKSEL - 1 to match the dpll param array indices */ ind = (readl((*prcm)->cm_sys_clksel) & CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1; } return ind; } u32 get_sys_clk_index(void) __attribute__ ((weak, alias("__get_sys_clk_index"))); u32 get_sys_clk_freq(void) { u8 index = get_sys_clk_index(); return sys_clk_array[index]; } void setup_post_dividers(u32 const base, const struct dpll_params *params) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; /* Setup post-dividers */ if (params->m2 >= 0) writel(params->m2, &dpll_regs->cm_div_m2_dpll); if (params->m3 >= 0) writel(params->m3, &dpll_regs->cm_div_m3_dpll); if (params->m4_h11 >= 0) writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll); if (params->m5_h12 >= 0) writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll); if (params->m6_h13 >= 0) writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll); if (params->m7_h14 >= 0) writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll); if (params->h21 >= 0) writel(params->h21, &dpll_regs->cm_div_h21_dpll); if (params->h22 >= 0) writel(params->h22, &dpll_regs->cm_div_h22_dpll); if (params->h23 >= 0) writel(params->h23, &dpll_regs->cm_div_h23_dpll); if (params->h24 >= 0) writel(params->h24, &dpll_regs->cm_div_h24_dpll); } static inline void do_bypass_dpll(u32 const base) { struct dpll_regs *dpll_regs = (struct dpll_regs *)base; clrsetbits_le32(&dpll_regs->cm_clkmode_dpll, CM_CLKMODE_DPLL_DPLL_EN_MASK, DPLL_EN_FAST_RELOCK_BYPASS << CM_CLKMODE_DPLL_EN_SHIFT); } static inline void wait_for_bypass(u32 const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll, LDELAY)) { printf("Bypassing DPLL failed %x\n", base); } } static inline void do_lock_dpll(u32 const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; clrsetbits_le32(&dpll_regs->cm_clkmode_dpll, CM_CLKMODE_DPLL_DPLL_EN_MASK, DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT); } static inline void wait_for_lock(u32 const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK, &dpll_regs->cm_idlest_dpll, LDELAY)) { printf("DPLL locking failed for %x\n", base); hang(); } } inline u32 check_for_lock(u32 const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK; return lock; } const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data) { u32 sysclk_ind = get_sys_clk_index(); return &dpll_data->mpu[sysclk_ind]; } const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data) { u32 sysclk_ind = get_sys_clk_index(); return &dpll_data->core[sysclk_ind]; } const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data) { u32 sysclk_ind = get_sys_clk_index(); return &dpll_data->per[sysclk_ind]; } const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data) { u32 sysclk_ind = get_sys_clk_index(); return &dpll_data->iva[sysclk_ind]; } const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data) { u32 sysclk_ind = get_sys_clk_index(); return &dpll_data->usb[sysclk_ind]; } const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data) { #ifdef CONFIG_SYS_OMAP_ABE_SYSCK u32 sysclk_ind = get_sys_clk_index(); return &dpll_data->abe[sysclk_ind]; #else return dpll_data->abe; #endif } static const struct dpll_params *get_ddr_dpll_params (struct dplls const *dpll_data) { u32 sysclk_ind = get_sys_clk_index(); if (!dpll_data->ddr) return NULL; return &dpll_data->ddr[sysclk_ind]; } #ifdef CONFIG_DRIVER_TI_CPSW static const struct dpll_params *get_gmac_dpll_params (struct dplls const *dpll_data) { u32 sysclk_ind = get_sys_clk_index(); if (!dpll_data->gmac) return NULL; return &dpll_data->gmac[sysclk_ind]; } #endif static void do_setup_dpll(u32 const base, const struct dpll_params *params, u8 lock, char *dpll) { u32 temp, M, N; struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; if (!params) return; temp = readl(&dpll_regs->cm_clksel_dpll); if (check_for_lock(base)) { /* * The Dpll has already been locked by rom code using CH. * Check if M,N are matching with Ideal nominal opp values. * If matches, skip the rest otherwise relock. */ M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT; N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT; if ((M != (params->m)) || (N != (params->n))) { debug("\n %s Dpll locked, but not for ideal M = %d," "N = %d values, current values are M = %d," "N= %d" , dpll, params->m, params->n, M, N); } else { /* Dpll locked with ideal values for nominal opps. */ debug("\n %s Dpll already locked with ideal" "nominal opp values", dpll); bypass_dpll(base); goto setup_post_dividers; } } bypass_dpll(base); /* Set M & N */ temp &= ~CM_CLKSEL_DPLL_M_MASK; temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK; temp &= ~CM_CLKSEL_DPLL_N_MASK; temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK; writel(temp, &dpll_regs->cm_clksel_dpll); setup_post_dividers: setup_post_dividers(base, params); /* Lock */ if (lock) do_lock_dpll(base); /* Wait till the DPLL locks */ if (lock) wait_for_lock(base); } u32 omap_ddr_clk(void) { u32 ddr_clk, sys_clk_khz, omap_rev, divider; const struct dpll_params *core_dpll_params; omap_rev = omap_revision(); sys_clk_khz = get_sys_clk_freq() / 1000; core_dpll_params = get_core_dpll_params(*dplls_data); debug("sys_clk %d\n ", sys_clk_khz * 1000); /* Find Core DPLL locked frequency first */ ddr_clk = sys_clk_khz * 2 * core_dpll_params->m / (core_dpll_params->n + 1); if (omap_rev < OMAP5430_ES1_0) { /* * DDR frequency is PHY_ROOT_CLK/2 * PHY_ROOT_CLK = Fdpll/2/M2 */ divider = 4; } else { /* * DDR frequency is PHY_ROOT_CLK * PHY_ROOT_CLK = Fdpll/2/M2 */ divider = 2; } ddr_clk = ddr_clk / divider / core_dpll_params->m2; ddr_clk *= 1000; /* convert to Hz */ debug("ddr_clk %d\n ", ddr_clk); return ddr_clk; } /* * Lock MPU dpll * * Resulting MPU frequencies: * 4430 ES1.0 : 600 MHz * 4430 ES2.x : 792 MHz (OPP Turbo) * 4460 : 920 MHz (OPP Turbo) - DCC disabled */ void configure_mpu_dpll(void) { const struct dpll_params *params; struct dpll_regs *mpu_dpll_regs; u32 omap_rev; omap_rev = omap_revision(); /* * DCC and clock divider settings for 4460. * DCC is required, if more than a certain frequency is required. * For, 4460 > 1GHZ. * 5430 > 1.4GHZ. */ if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) { mpu_dpll_regs = (struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu); bypass_dpll((*prcm)->cm_clkmode_dpll_mpu); clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl, MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK); setbits_le32((*prcm)->cm_mpu_mpu_clkctrl, MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK); clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll, CM_CLKSEL_DCC_EN_MASK); } params = get_mpu_dpll_params(*dplls_data); do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu"); debug("MPU DPLL locked\n"); } #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \ defined(CONFIG_USB_MUSB_OMAP2PLUS) static void setup_usb_dpll(void) { const struct dpll_params *params; u32 sys_clk_khz, sd_div, num, den; sys_clk_khz = get_sys_clk_freq() / 1000; /* * USB: * USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction * DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250) * - where CLKINP is sys_clk in MHz * Use CLKINP in KHz and adjust the denominator accordingly so * that we have enough accuracy and at the same time no overflow */ params = get_usb_dpll_params(*dplls_data); num = params->m * sys_clk_khz; den = (params->n + 1) * 250 * 1000; num += den - 1; sd_div = num / den; clrsetbits_le32((*prcm)->cm_clksel_dpll_usb, CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK, sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT); /* Now setup the dpll with the regular function */ do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb"); } #endif static void setup_dplls(void) { u32 temp; const struct dpll_params *params; struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE; debug("setup_dplls\n"); /* CORE dpll */ params = get_core_dpll_params(*dplls_data); /* default - safest */ /* * Do not lock the core DPLL now. Just set it up. * Core DPLL will be locked after setting up EMIF * using the FREQ_UPDATE method(freq_update_core()) */ if (emif_sdram_type(readl(&emif->emif_sdram_config)) == EMIF_SDRAM_TYPE_LPDDR2) do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params, DPLL_NO_LOCK, "core"); else do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params, DPLL_LOCK, "core"); /* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */ temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) | (CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) | (CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT); writel(temp, (*prcm)->cm_clksel_core); debug("Core DPLL configured\n"); /* lock PER dpll */ params = get_per_dpll_params(*dplls_data); do_setup_dpll((*prcm)->cm_clkmode_dpll_per, params, DPLL_LOCK, "per"); debug("PER DPLL locked\n"); /* MPU dpll */ configure_mpu_dpll(); #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \ defined(CONFIG_USB_MUSB_OMAP2PLUS) setup_usb_dpll(); #endif params = get_ddr_dpll_params(*dplls_data); do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy, params, DPLL_LOCK, "ddr"); #ifdef CONFIG_DRIVER_TI_CPSW params = get_gmac_dpll_params(*dplls_data); do_setup_dpll((*prcm)->cm_clkmode_dpll_gmac, params, DPLL_LOCK, "gmac"); #endif } u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic) { u32 offset_code; volt_offset -= pmic->base_offset; offset_code = (volt_offset + pmic->step - 1) / pmic->step; /* * Offset codes 1-6 all give the base voltage in Palmas * Offset code 0 switches OFF the SMPS */ return offset_code + pmic->start_code; } void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic) { u32 offset_code; u32 offset = volt_mv; int ret = 0; if (!volt_mv) return; pmic->pmic_bus_init(); /* See if we can first get the GPIO if needed */ if (pmic->gpio_en) ret = gpio_request(pmic->gpio, "PMIC_GPIO"); if (ret < 0) { printf("%s: gpio %d request failed %d\n", __func__, pmic->gpio, ret); return; } /* Pull the GPIO low to select SET0 register, while we program SET1 */ if (pmic->gpio_en) gpio_direction_output(pmic->gpio, 0); /* convert to uV for better accuracy in the calculations */ offset *= 1000; offset_code = get_offset_code(offset, pmic); debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv, offset_code); if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code)) printf("Scaling voltage failed for 0x%x\n", vcore_reg); if (pmic->gpio_en) gpio_direction_output(pmic->gpio, 1); } static u32 optimize_vcore_voltage(struct volts const *v) { u32 val; if (!v->value) return 0; if (!v->efuse.reg) return v->value; switch (v->efuse.reg_bits) { case 16: val = readw(v->efuse.reg); break; case 32: val = readl(v->efuse.reg); break; default: printf("Error: efuse 0x%08x bits=%d unknown\n", v->efuse.reg, v->efuse.reg_bits); return v->value; } if (!val) { printf("Error: efuse 0x%08x bits=%d val=0, using %d\n", v->efuse.reg, v->efuse.reg_bits, v->value); return v->value; } debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n", __func__, v->efuse.reg, v->efuse.reg_bits, v->value, val); return val; } #ifdef CONFIG_IODELAY_RECALIBRATION void __weak recalibrate_iodelay(void) { } #endif /* * Setup the voltages for the main SoC core power domains. * We start with the maximum voltages allowed here, as set in the corresponding * vcores_data struct, and then scale (usually down) to the fused values that * are retrieved from the SoC. The scaling happens only if the efuse.reg fields * are initialised. * Rail grouping is supported for the DRA7xx SoCs only, therefore the code is * compiled conditionally. Note that the new code writes the scaled (or zeroed) * values back to the vcores_data struct for eventual reuse. Zero values mean * that the corresponding rails are not controlled separately, and are not sent * to the PMIC. */ void scale_vcores(struct vcores_data const *vcores) { int i; struct volts *pv = (struct volts *)vcores; struct volts *px; for (i=0; i<(sizeof(struct vcores_data)/sizeof(struct volts)); i++) { debug("%d -> ", pv->value); if (pv->value) { /* Handle non-empty members only */ pv->value = optimize_vcore_voltage(pv); px = (struct volts *)vcores; while (px < pv) { /* * Scan already handled non-empty members to see * if we have a group and find the max voltage, * which is set to the first occurance of the * particular SMPS; the other group voltages are * zeroed. */ if (px->value) { if ((pv->pmic->i2c_slave_addr == px->pmic->i2c_slave_addr) && (pv->addr == px->addr)) { /* Same PMIC, same SMPS */ if (pv->value > px->value) px->value = pv->value; pv->value = 0; } } px++; } } debug("%d\n", pv->value); pv++; } debug("cor: %d\n", vcores->core.value); do_scale_vcore(vcores->core.addr, vcores->core.value, vcores->core.pmic); /* * IO delay recalibration should be done immediately after * adjusting AVS voltages for VDD_CORE_L. * Respective boards should call __recalibrate_iodelay() * with proper mux, virtual and manual mode configurations. */ #ifdef CONFIG_IODELAY_RECALIBRATION recalibrate_iodelay(); #endif debug("mpu: %d\n", vcores->mpu.value); do_scale_vcore(vcores->mpu.addr, vcores->mpu.value, vcores->mpu.pmic); /* Configure MPU ABB LDO after scale */ abb_setup(vcores->mpu.efuse.reg, (*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl, (*prcm)->prm_abbldo_mpu_setup, (*prcm)->prm_abbldo_mpu_ctrl, (*prcm)->prm_irqstatus_mpu_2, vcores->mpu.abb_tx_done_mask, OMAP_ABB_FAST_OPP); debug("mm: %d\n", vcores->mm.value); do_scale_vcore(vcores->mm.addr, vcores->mm.value, vcores->mm.pmic); /* Configure MM ABB LDO after scale */ abb_setup(vcores->mm.efuse.reg, (*ctrl)->control_wkup_ldovbb_mm_voltage_ctrl, (*prcm)->prm_abbldo_mm_setup, (*prcm)->prm_abbldo_mm_ctrl, (*prcm)->prm_irqstatus_mpu, vcores->mm.abb_tx_done_mask, OMAP_ABB_FAST_OPP); debug("gpu: %d\n", vcores->gpu.value); do_scale_vcore(vcores->gpu.addr, vcores->gpu.value, vcores->gpu.pmic); /* Configure GPU ABB LDO after scale */ abb_setup(vcores->gpu.efuse.reg, (*ctrl)->control_wkup_ldovbb_gpu_voltage_ctrl, (*prcm)->prm_abbldo_gpu_setup, (*prcm)->prm_abbldo_gpu_ctrl, (*prcm)->prm_irqstatus_mpu, vcores->gpu.abb_tx_done_mask, OMAP_ABB_FAST_OPP); debug("eve: %d\n", vcores->eve.value); do_scale_vcore(vcores->eve.addr, vcores->eve.value, vcores->eve.pmic); /* Configure EVE ABB LDO after scale */ abb_setup(vcores->eve.efuse.reg, (*ctrl)->control_wkup_ldovbb_eve_voltage_ctrl, (*prcm)->prm_abbldo_eve_setup, (*prcm)->prm_abbldo_eve_ctrl, (*prcm)->prm_irqstatus_mpu, vcores->eve.abb_tx_done_mask, OMAP_ABB_FAST_OPP); debug("iva: %d\n", vcores->iva.value); do_scale_vcore(vcores->iva.addr, vcores->iva.value, vcores->iva.pmic); /* Configure IVA ABB LDO after scale */ abb_setup(vcores->iva.efuse.reg, (*ctrl)->control_wkup_ldovbb_iva_voltage_ctrl, (*prcm)->prm_abbldo_iva_setup, (*prcm)->prm_abbldo_iva_ctrl, (*prcm)->prm_irqstatus_mpu, vcores->iva.abb_tx_done_mask, OMAP_ABB_FAST_OPP); } static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode) { clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK, enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT); debug("Enable clock domain - %x\n", clkctrl_reg); } static inline void disable_clock_domain(u32 const clkctrl_reg) { clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK, CD_CLKCTRL_CLKTRCTRL_SW_SLEEP << CD_CLKCTRL_CLKTRCTRL_SHIFT); debug("Disable clock domain - %x\n", clkctrl_reg); } static inline void wait_for_clk_enable(u32 clkctrl_addr) { u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED; u32 bound = LDELAY; while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) || (idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) { clkctrl = readl(clkctrl_addr); idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >> MODULE_CLKCTRL_IDLEST_SHIFT; if (--bound == 0) { printf("Clock enable failed for 0x%x idlest 0x%x\n", clkctrl_addr, clkctrl); return; } } } static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode, u32 wait_for_enable) { clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK, enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT); debug("Enable clock module - %x\n", clkctrl_addr); if (wait_for_enable) wait_for_clk_enable(clkctrl_addr); } static inline void wait_for_clk_disable(u32 clkctrl_addr) { u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_FULLY_FUNCTIONAL; u32 bound = LDELAY; while ((idlest != MODULE_CLKCTRL_IDLEST_DISABLED)) { clkctrl = readl(clkctrl_addr); idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >> MODULE_CLKCTRL_IDLEST_SHIFT; if (--bound == 0) { printf("Clock disable failed for 0x%x idlest 0x%x\n", clkctrl_addr, clkctrl); return; } } } static inline void disable_clock_module(u32 const clkctrl_addr, u32 wait_for_disable) { clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_DISABLE << MODULE_CLKCTRL_MODULEMODE_SHIFT); debug("Disable clock module - %x\n", clkctrl_addr); if (wait_for_disable) wait_for_clk_disable(clkctrl_addr); } void freq_update_core(void) { u32 freq_config1 = 0; const struct dpll_params *core_dpll_params; u32 omap_rev = omap_revision(); core_dpll_params = get_core_dpll_params(*dplls_data); /* Put EMIF clock domain in sw wakeup mode */ enable_clock_domain((*prcm)->cm_memif_clkstctrl, CD_CLKCTRL_CLKTRCTRL_SW_WKUP); wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl); wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl); freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK | SHADOW_FREQ_CONFIG1_DLL_RESET_MASK; freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) & SHADOW_FREQ_CONFIG1_DPLL_EN_MASK; freq_config1 |= (core_dpll_params->m2 << SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) & SHADOW_FREQ_CONFIG1_M2_DIV_MASK; writel(freq_config1, (*prcm)->cm_shadow_freq_config1); if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0, (u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) { puts("FREQ UPDATE procedure failed!!"); hang(); } /* * Putting EMIF in HW_AUTO is seen to be causing issues with * EMIF clocks and the master DLL. Keep EMIF in SW_WKUP * in OMAP5430 ES1.0 silicon */ if (omap_rev != OMAP5430_ES1_0) { /* Put EMIF clock domain back in hw auto mode */ enable_clock_domain((*prcm)->cm_memif_clkstctrl, CD_CLKCTRL_CLKTRCTRL_HW_AUTO); wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl); wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl); } } void bypass_dpll(u32 const base) { do_bypass_dpll(base); wait_for_bypass(base); } void lock_dpll(u32 const base) { do_lock_dpll(base); wait_for_lock(base); } static void setup_clocks_for_console(void) { /* Do not add any spl_debug prints in this function */ clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK, CD_CLKCTRL_CLKTRCTRL_SW_WKUP << CD_CLKCTRL_CLKTRCTRL_SHIFT); /* Enable all UARTs - console will be on one of them */ clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK, CD_CLKCTRL_CLKTRCTRL_HW_AUTO << CD_CLKCTRL_CLKTRCTRL_SHIFT); } void do_enable_clocks(u32 const *clk_domains, u32 const *clk_modules_hw_auto, u32 const *clk_modules_explicit_en, u8 wait_for_enable) { u32 i, max = 100; /* Put the clock domains in SW_WKUP mode */ for (i = 0; (i < max) && clk_domains[i]; i++) { enable_clock_domain(clk_domains[i], CD_CLKCTRL_CLKTRCTRL_SW_WKUP); } /* Clock modules that need to be put in HW_AUTO */ for (i = 0; (i < max) && clk_modules_hw_auto[i]; i++) { enable_clock_module(clk_modules_hw_auto[i], MODULE_CLKCTRL_MODULEMODE_HW_AUTO, wait_for_enable); }; /* Clock modules that need to be put in SW_EXPLICIT_EN mode */ for (i = 0; (i < max) && clk_modules_explicit_en[i]; i++) { enable_clock_module(clk_modules_explicit_en[i], MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN, wait_for_enable); }; /* Put the clock domains in HW_AUTO mode now */ for (i = 0; (i < max) && clk_domains[i]; i++) { enable_clock_domain(clk_domains[i], CD_CLKCTRL_CLKTRCTRL_HW_AUTO); } } void do_disable_clocks(u32 const *clk_domains, u32 const *clk_modules_disable, u8 wait_for_disable) { u32 i, max = 100; /* Clock modules that need to be put in SW_DISABLE */ for (i = 0; (i < max) && clk_modules_disable[i]; i++) disable_clock_module(clk_modules_disable[i], wait_for_disable); /* Put the clock domains in SW_SLEEP mode */ for (i = 0; (i < max) && clk_domains[i]; i++) disable_clock_domain(clk_domains[i]); } /** * setup_early_clocks() - Setup early clocks needed for SoC * * Setup clocks for console, SPL basic initialization clocks and initialize * the timer. This is invoked prior prcm_init. */ void setup_early_clocks(void) { switch (omap_hw_init_context()) { case OMAP_INIT_CONTEXT_SPL: case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR: case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH: setup_clocks_for_console(); enable_basic_clocks(); timer_init(); /* Fall through */ } } void prcm_init(void) { switch (omap_hw_init_context()) { case OMAP_INIT_CONTEXT_SPL: case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR: case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH: scale_vcores(*omap_vcores); setup_dplls(); setup_warmreset_time(); break; default: break; } if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context()) enable_basic_uboot_clocks(); } void gpi2c_init(void) { static int gpi2c = 1; if (gpi2c) { i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE); gpi2c = 0; } }