/* * (C) Copyright 2015 Google, Inc * Copyright 2014 Rockchip Inc. * * SPDX-License-Identifier: GPL-2.0 * * Adapted from coreboot. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; struct chan_info { struct rk3288_ddr_pctl *pctl; struct rk3288_ddr_publ *publ; struct rk3288_msch *msch; }; struct dram_info { struct chan_info chan[2]; struct ram_info info; struct udevice *ddr_clk; struct rk3288_cru *cru; struct rk3288_grf *grf; struct rk3288_sgrf *sgrf; struct rk3288_pmu *pmu; }; #ifdef CONFIG_SPL_BUILD static void copy_to_reg(u32 *dest, const u32 *src, u32 n) { int i; for (i = 0; i < n / sizeof(u32); i++) { writel(*src, dest); src++; dest++; } } static void ddr_reset(struct rk3288_cru *cru, u32 ch, u32 ctl, u32 phy) { u32 phy_ctl_srstn_shift = 4 + 5 * ch; u32 ctl_psrstn_shift = 3 + 5 * ch; u32 ctl_srstn_shift = 2 + 5 * ch; u32 phy_psrstn_shift = 1 + 5 * ch; u32 phy_srstn_shift = 5 * ch; rk_clrsetreg(&cru->cru_softrst_con[10], 1 << phy_ctl_srstn_shift | 1 << ctl_psrstn_shift | 1 << ctl_srstn_shift | 1 << phy_psrstn_shift | 1 << phy_srstn_shift, phy << phy_ctl_srstn_shift | ctl << ctl_psrstn_shift | ctl << ctl_srstn_shift | phy << phy_psrstn_shift | phy << phy_srstn_shift); } static void ddr_phy_ctl_reset(struct rk3288_cru *cru, u32 ch, u32 n) { u32 phy_ctl_srstn_shift = 4 + 5 * ch; rk_clrsetreg(&cru->cru_softrst_con[10], 1 << phy_ctl_srstn_shift, n << phy_ctl_srstn_shift); } static void phy_pctrl_reset(struct rk3288_cru *cru, struct rk3288_ddr_publ *publ, u32 channel) { int i; ddr_reset(cru, channel, 1, 1); udelay(1); clrbits_le32(&publ->acdllcr, ACDLLCR_DLLSRST); for (i = 0; i < 4; i++) clrbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLSRST); udelay(10); setbits_le32(&publ->acdllcr, ACDLLCR_DLLSRST); for (i = 0; i < 4; i++) setbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLSRST); udelay(10); ddr_reset(cru, channel, 1, 0); udelay(10); ddr_reset(cru, channel, 0, 0); udelay(10); } static void phy_dll_bypass_set(struct rk3288_ddr_publ *publ, u32 freq) { int i; if (freq <= 250000000) { if (freq <= 150000000) clrbits_le32(&publ->dllgcr, SBIAS_BYPASS); else setbits_le32(&publ->dllgcr, SBIAS_BYPASS); setbits_le32(&publ->acdllcr, ACDLLCR_DLLDIS); for (i = 0; i < 4; i++) setbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLDIS); setbits_le32(&publ->pir, PIR_DLLBYP); } else { clrbits_le32(&publ->dllgcr, SBIAS_BYPASS); clrbits_le32(&publ->acdllcr, ACDLLCR_DLLDIS); for (i = 0; i < 4; i++) { clrbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLDIS); } clrbits_le32(&publ->pir, PIR_DLLBYP); } } static void dfi_cfg(struct rk3288_ddr_pctl *pctl, u32 dramtype) { writel(DFI_INIT_START, &pctl->dfistcfg0); writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN, &pctl->dfistcfg1); writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2); writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN, &pctl->dfilpcfg0); writel(2 << TCTRL_DELAY_TIME_SHIFT, &pctl->dfitctrldelay); writel(1 << TPHY_WRDATA_TIME_SHIFT, &pctl->dfitphywrdata); writel(0xf << TPHY_RDLAT_TIME_SHIFT, &pctl->dfitphyrdlat); writel(2 << TDRAM_CLK_DIS_TIME_SHIFT, &pctl->dfitdramclkdis); writel(2 << TDRAM_CLK_EN_TIME_SHIFT, &pctl->dfitdramclken); writel(1, &pctl->dfitphyupdtype0); /* cs0 and cs1 write odt enable */ writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg); /* odt write length */ writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1); /* phyupd and ctrlupd disabled */ writel(0, &pctl->dfiupdcfg); } static void ddr_set_enable(struct rk3288_grf *grf, uint channel, bool enable) { uint val = 0; if (enable) { val = 1 << (channel ? DDR1_16BIT_EN_SHIFT : DDR0_16BIT_EN_SHIFT); } rk_clrsetreg(&grf->soc_con0, 1 << (channel ? DDR1_16BIT_EN_SHIFT : DDR0_16BIT_EN_SHIFT), val); } static void ddr_set_ddr3_mode(struct rk3288_grf *grf, uint channel, bool ddr3_mode) { uint mask, val; mask = 1 << (channel ? MSCH1_MAINDDR3_SHIFT : MSCH0_MAINDDR3_SHIFT); val = ddr3_mode << (channel ? MSCH1_MAINDDR3_SHIFT : MSCH0_MAINDDR3_SHIFT); rk_clrsetreg(&grf->soc_con0, mask, val); } static void ddr_set_en_bst_odt(struct rk3288_grf *grf, uint channel, bool enable, bool enable_bst, bool enable_odt) { uint mask; bool disable_bst = !enable_bst; mask = channel ? (1 << LPDDR3_EN1_SHIFT | 1 << UPCTL1_BST_DIABLE_SHIFT | 1 << UPCTL1_LPDDR3_ODT_EN_SHIFT) : (1 << LPDDR3_EN0_SHIFT | 1 << UPCTL0_BST_DIABLE_SHIFT | 1 << UPCTL0_LPDDR3_ODT_EN_SHIFT); rk_clrsetreg(&grf->soc_con2, mask, enable << (channel ? LPDDR3_EN1_SHIFT : LPDDR3_EN0_SHIFT) | disable_bst << (channel ? UPCTL1_BST_DIABLE_SHIFT : UPCTL0_BST_DIABLE_SHIFT) | enable_odt << (channel ? UPCTL1_LPDDR3_ODT_EN_SHIFT : UPCTL0_LPDDR3_ODT_EN_SHIFT)); } static void pctl_cfg(u32 channel, struct rk3288_ddr_pctl *pctl, const struct rk3288_sdram_params *sdram_params, struct rk3288_grf *grf) { unsigned int burstlen; burstlen = (sdram_params->base.noc_timing >> 18) & 0x7; copy_to_reg(&pctl->togcnt1u, &sdram_params->pctl_timing.togcnt1u, sizeof(sdram_params->pctl_timing)); switch (sdram_params->base.dramtype) { case LPDDR3: writel(sdram_params->pctl_timing.tcl - 1, &pctl->dfitrddataen); writel(sdram_params->pctl_timing.tcwl, &pctl->dfitphywrlat); burstlen >>= 1; writel(LPDDR2_S4 | 0 << MDDR_LPDDR2_CLK_STOP_IDLE_SHIFT | LPDDR2_EN | burstlen << BURSTLENGTH_SHIFT | (6 - 4) << TFAW_SHIFT | PD_EXIT_FAST | 1 << PD_TYPE_SHIFT | 0 << PD_IDLE_SHIFT, &pctl->mcfg); ddr_set_ddr3_mode(grf, channel, false); ddr_set_enable(grf, channel, true); ddr_set_en_bst_odt(grf, channel, true, false, sdram_params->base.odt); break; case DDR3: if (sdram_params->phy_timing.mr[1] & DDR3_DLL_DISABLE) { writel(sdram_params->pctl_timing.tcl - 3, &pctl->dfitrddataen); } else { writel(sdram_params->pctl_timing.tcl - 2, &pctl->dfitrddataen); } writel(sdram_params->pctl_timing.tcwl - 1, &pctl->dfitphywrlat); writel(0 << MDDR_LPDDR2_CLK_STOP_IDLE_SHIFT | DDR3_EN | DDR2_DDR3_BL_8 | (6 - 4) << TFAW_SHIFT | PD_EXIT_SLOW | 1 << PD_TYPE_SHIFT | 0 << PD_IDLE_SHIFT, &pctl->mcfg); ddr_set_ddr3_mode(grf, channel, true); ddr_set_enable(grf, channel, true); ddr_set_en_bst_odt(grf, channel, false, true, false); break; } setbits_le32(&pctl->scfg, 1); } static void phy_cfg(const struct chan_info *chan, u32 channel, const struct rk3288_sdram_params *sdram_params) { struct rk3288_ddr_publ *publ = chan->publ; struct rk3288_msch *msch = chan->msch; uint ddr_freq_mhz = sdram_params->base.ddr_freq / 1000000; u32 dinit2, tmp; int i; dinit2 = DIV_ROUND_UP(ddr_freq_mhz * 200000, 1000); /* DDR PHY Timing */ copy_to_reg(&publ->dtpr[0], &sdram_params->phy_timing.dtpr0, sizeof(sdram_params->phy_timing)); writel(sdram_params->base.noc_timing, &msch->ddrtiming); writel(0x3f, &msch->readlatency); writel(sdram_params->base.noc_activate, &msch->activate); writel(2 << BUSWRTORD_SHIFT | 2 << BUSRDTOWR_SHIFT | 1 << BUSRDTORD_SHIFT, &msch->devtodev); writel(DIV_ROUND_UP(ddr_freq_mhz * 5120, 1000) << PRT_DLLLOCK_SHIFT | DIV_ROUND_UP(ddr_freq_mhz * 50, 1000) << PRT_DLLSRST_SHIFT | 8 << PRT_ITMSRST_SHIFT, &publ->ptr[0]); writel(DIV_ROUND_UP(ddr_freq_mhz * 500000, 1000) << PRT_DINIT0_SHIFT | DIV_ROUND_UP(ddr_freq_mhz * 400, 1000) << PRT_DINIT1_SHIFT, &publ->ptr[1]); writel(min(dinit2, 0x1ffffU) << PRT_DINIT2_SHIFT | DIV_ROUND_UP(ddr_freq_mhz * 1000, 1000) << PRT_DINIT3_SHIFT, &publ->ptr[2]); switch (sdram_params->base.dramtype) { case LPDDR3: clrsetbits_le32(&publ->pgcr, 0x1F, 0 << PGCR_DFTLMT_SHIFT | 0 << PGCR_DFTCMP_SHIFT | 1 << PGCR_DQSCFG_SHIFT | 0 << PGCR_ITMDMD_SHIFT); /* DDRMODE select LPDDR3 */ clrsetbits_le32(&publ->dcr, DDRMD_MASK << DDRMD_SHIFT, DDRMD_LPDDR2_LPDDR3 << DDRMD_SHIFT); clrsetbits_le32(&publ->dxccr, DQSNRES_MASK << DQSNRES_SHIFT | DQSRES_MASK << DQSRES_SHIFT, 4 << DQSRES_SHIFT | 0xc << DQSNRES_SHIFT); tmp = readl(&publ->dtpr[1]); tmp = ((tmp >> TDQSCKMAX_SHIFT) & TDQSCKMAX_MASK) - ((tmp >> TDQSCK_SHIFT) & TDQSCK_MASK); clrsetbits_le32(&publ->dsgcr, DQSGE_MASK << DQSGE_SHIFT | DQSGX_MASK << DQSGX_SHIFT, tmp << DQSGE_SHIFT | tmp << DQSGX_SHIFT); break; case DDR3: clrbits_le32(&publ->pgcr, 0x1f); clrsetbits_le32(&publ->dcr, DDRMD_MASK << DDRMD_SHIFT, DDRMD_DDR3 << DDRMD_SHIFT); break; } if (sdram_params->base.odt) { /*dynamic RTT enable */ for (i = 0; i < 4; i++) setbits_le32(&publ->datx8[i].dxgcr, DQSRTT | DQRTT); } else { /*dynamic RTT disable */ for (i = 0; i < 4; i++) clrbits_le32(&publ->datx8[i].dxgcr, DQSRTT | DQRTT); } } static void phy_init(struct rk3288_ddr_publ *publ) { setbits_le32(&publ->pir, PIR_INIT | PIR_DLLSRST | PIR_DLLLOCK | PIR_ZCAL | PIR_ITMSRST | PIR_CLRSR); udelay(1); while ((readl(&publ->pgsr) & (PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE)) != (PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE)) ; } static void send_command(struct rk3288_ddr_pctl *pctl, u32 rank, u32 cmd, u32 arg) { writel((START_CMD | (rank << 20) | arg | cmd), &pctl->mcmd); udelay(1); while (readl(&pctl->mcmd) & START_CMD) ; } static inline void send_command_op(struct rk3288_ddr_pctl *pctl, u32 rank, u32 cmd, u32 ma, u32 op) { send_command(pctl, rank, cmd, (ma & LPDDR2_MA_MASK) << LPDDR2_MA_SHIFT | (op & LPDDR2_OP_MASK) << LPDDR2_OP_SHIFT); } static void memory_init(struct rk3288_ddr_publ *publ, u32 dramtype) { setbits_le32(&publ->pir, (PIR_INIT | PIR_DRAMINIT | PIR_LOCKBYP | PIR_ZCALBYP | PIR_CLRSR | PIR_ICPC | (dramtype == DDR3 ? PIR_DRAMRST : 0))); udelay(1); while ((readl(&publ->pgsr) & (PGSR_IDONE | PGSR_DLDONE)) != (PGSR_IDONE | PGSR_DLDONE)) ; } static void move_to_config_state(struct rk3288_ddr_publ *publ, struct rk3288_ddr_pctl *pctl) { unsigned int state; while (1) { state = readl(&pctl->stat) & PCTL_STAT_MSK; switch (state) { case LOW_POWER: writel(WAKEUP_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) ; /* wait DLL lock */ while ((readl(&publ->pgsr) & PGSR_DLDONE) != PGSR_DLDONE) ; /* if at low power state,need wakeup first, * and then enter the config * so here no break. */ case ACCESS: /* no break */ case INIT_MEM: writel(CFG_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) ; break; case CONFIG: return; default: break; } } } static void set_bandwidth_ratio(const struct chan_info *chan, u32 channel, u32 n, struct rk3288_grf *grf) { struct rk3288_ddr_pctl *pctl = chan->pctl; struct rk3288_ddr_publ *publ = chan->publ; struct rk3288_msch *msch = chan->msch; if (n == 1) { setbits_le32(&pctl->ppcfg, 1); rk_setreg(&grf->soc_con0, 1 << (8 + channel)); setbits_le32(&msch->ddrtiming, 1 << 31); /* Data Byte disable*/ clrbits_le32(&publ->datx8[2].dxgcr, 1); clrbits_le32(&publ->datx8[3].dxgcr, 1); /* disable DLL */ setbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLDIS); setbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLDIS); } else { clrbits_le32(&pctl->ppcfg, 1); rk_clrreg(&grf->soc_con0, 1 << (8 + channel)); clrbits_le32(&msch->ddrtiming, 1 << 31); /* Data Byte enable*/ setbits_le32(&publ->datx8[2].dxgcr, 1); setbits_le32(&publ->datx8[3].dxgcr, 1); /* enable DLL */ clrbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLDIS); clrbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLDIS); /* reset DLL */ clrbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLSRST); clrbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLSRST); udelay(10); setbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLSRST); setbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLSRST); } setbits_le32(&pctl->dfistcfg0, 1 << 2); } static int data_training(const struct chan_info *chan, u32 channel, const struct rk3288_sdram_params *sdram_params) { unsigned int j; int ret = 0; u32 rank; int i; u32 step[2] = { PIR_QSTRN, PIR_RVTRN }; struct rk3288_ddr_publ *publ = chan->publ; struct rk3288_ddr_pctl *pctl = chan->pctl; /* disable auto refresh */ writel(0, &pctl->trefi); if (sdram_params->base.dramtype != LPDDR3) setbits_le32(&publ->pgcr, 1 << PGCR_DQSCFG_SHIFT); rank = sdram_params->ch[channel].rank | 1; for (j = 0; j < ARRAY_SIZE(step); j++) { /* * trigger QSTRN and RVTRN * clear DTDONE status */ setbits_le32(&publ->pir, PIR_CLRSR); /* trigger DTT */ setbits_le32(&publ->pir, PIR_INIT | step[j] | PIR_LOCKBYP | PIR_ZCALBYP | PIR_CLRSR); udelay(1); /* wait echo byte DTDONE */ while ((readl(&publ->datx8[0].dxgsr[0]) & rank) != rank) ; while ((readl(&publ->datx8[1].dxgsr[0]) & rank) != rank) ; if (!(readl(&pctl->ppcfg) & 1)) { while ((readl(&publ->datx8[2].dxgsr[0]) & rank) != rank) ; while ((readl(&publ->datx8[3].dxgsr[0]) & rank) != rank) ; } if (readl(&publ->pgsr) & (PGSR_DTERR | PGSR_RVERR | PGSR_RVEIRR)) { ret = -1; break; } } /* send some auto refresh to complement the lost while DTT */ for (i = 0; i < (rank > 1 ? 8 : 4); i++) send_command(pctl, rank, REF_CMD, 0); if (sdram_params->base.dramtype != LPDDR3) clrbits_le32(&publ->pgcr, 1 << PGCR_DQSCFG_SHIFT); /* resume auto refresh */ writel(sdram_params->pctl_timing.trefi, &pctl->trefi); return ret; } static void move_to_access_state(const struct chan_info *chan) { struct rk3288_ddr_publ *publ = chan->publ; struct rk3288_ddr_pctl *pctl = chan->pctl; unsigned int state; while (1) { state = readl(&pctl->stat) & PCTL_STAT_MSK; switch (state) { case LOW_POWER: if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) & LP_TRIG_MASK) == 1) return; writel(WAKEUP_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) ; /* wait DLL lock */ while ((readl(&publ->pgsr) & PGSR_DLDONE) != PGSR_DLDONE) ; break; case INIT_MEM: writel(CFG_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) ; case CONFIG: writel(GO_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG) ; break; case ACCESS: return; default: break; } } } static void dram_cfg_rbc(const struct chan_info *chan, u32 chnum, const struct rk3288_sdram_params *sdram_params) { struct rk3288_ddr_publ *publ = chan->publ; if (sdram_params->ch[chnum].bk == 3) clrsetbits_le32(&publ->dcr, PDQ_MASK << PDQ_SHIFT, 1 << PDQ_SHIFT); else clrbits_le32(&publ->dcr, PDQ_MASK << PDQ_SHIFT); writel(sdram_params->base.ddrconfig, &chan->msch->ddrconf); } static void dram_all_config(const struct dram_info *dram, const struct rk3288_sdram_params *sdram_params) { unsigned int chan; u32 sys_reg = 0; sys_reg |= sdram_params->base.dramtype << SYS_REG_DDRTYPE_SHIFT; sys_reg |= (sdram_params->num_channels - 1) << SYS_REG_NUM_CH_SHIFT; for (chan = 0; chan < sdram_params->num_channels; chan++) { const struct rk3288_sdram_channel *info = &sdram_params->ch[chan]; sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan); sys_reg |= chan << SYS_REG_CHINFO_SHIFT(chan); sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan); sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan); sys_reg |= info->bk == 3 ? 1 << SYS_REG_BK_SHIFT(chan) : 0; sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan); sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan); sys_reg |= info->bw << SYS_REG_BW_SHIFT(chan); sys_reg |= info->dbw << SYS_REG_DBW_SHIFT(chan); dram_cfg_rbc(&dram->chan[chan], chan, sdram_params); } writel(sys_reg, &dram->pmu->sys_reg[2]); rk_clrsetreg(&dram->sgrf->soc_con2, 0x1f, sdram_params->base.stride); } static int sdram_init(const struct dram_info *dram, const struct rk3288_sdram_params *sdram_params) { int channel; int zqcr; int ret; debug("%s start\n", __func__); if ((sdram_params->base.dramtype == DDR3 && sdram_params->base.ddr_freq > 800000000) || (sdram_params->base.dramtype == LPDDR3 && sdram_params->base.ddr_freq > 533000000)) { debug("SDRAM frequency is too high!"); return -E2BIG; } debug("ddr clk %s\n", dram->ddr_clk->name); ret = clk_set_rate(dram->ddr_clk, sdram_params->base.ddr_freq); debug("ret=%d\n", ret); if (ret) { debug("Could not set DDR clock\n"); return ret; } for (channel = 0; channel < 2; channel++) { const struct chan_info *chan = &dram->chan[channel]; struct rk3288_ddr_pctl *pctl = chan->pctl; struct rk3288_ddr_publ *publ = chan->publ; phy_pctrl_reset(dram->cru, publ, channel); phy_dll_bypass_set(publ, sdram_params->base.ddr_freq); if (channel >= sdram_params->num_channels) continue; dfi_cfg(pctl, sdram_params->base.dramtype); pctl_cfg(channel, pctl, sdram_params, dram->grf); phy_cfg(chan, channel, sdram_params); phy_init(publ); writel(POWER_UP_START, &pctl->powctl); while (!(readl(&pctl->powstat) & POWER_UP_DONE)) ; memory_init(publ, sdram_params->base.dramtype); move_to_config_state(publ, pctl); if (sdram_params->base.dramtype == LPDDR3) { send_command(pctl, 3, DESELECT_CMD, 0); udelay(1); send_command(pctl, 3, PREA_CMD, 0); udelay(1); send_command_op(pctl, 3, MRS_CMD, 63, 0xfc); udelay(1); send_command_op(pctl, 3, MRS_CMD, 1, sdram_params->phy_timing.mr[1]); udelay(1); send_command_op(pctl, 3, MRS_CMD, 2, sdram_params->phy_timing.mr[2]); udelay(1); send_command_op(pctl, 3, MRS_CMD, 3, sdram_params->phy_timing.mr[3]); udelay(1); } set_bandwidth_ratio(chan, channel, sdram_params->ch[channel].bw, dram->grf); /* * set cs * CS0, n=1 * CS1, n=2 * CS0 & CS1, n = 3 */ clrsetbits_le32(&publ->pgcr, 0xF << 18, (sdram_params->ch[channel].rank | 1) << 18); /* DS=40ohm,ODT=155ohm */ zqcr = 1 << ZDEN_SHIFT | 2 << PU_ONDIE_SHIFT | 2 << PD_ONDIE_SHIFT | 0x19 << PU_OUTPUT_SHIFT | 0x19 << PD_OUTPUT_SHIFT; writel(zqcr, &publ->zq1cr[0]); writel(zqcr, &publ->zq0cr[0]); if (sdram_params->base.dramtype == LPDDR3) { /* LPDDR2/LPDDR3 need to wait DAI complete, max 10us */ udelay(10); send_command_op(pctl, sdram_params->ch[channel].rank | 1, MRS_CMD, 11, sdram_params->base.odt ? 3 : 0); if (channel == 0) { writel(0, &pctl->mrrcfg0); send_command_op(pctl, 1, MRR_CMD, 8, 0); /* S8 */ if ((readl(&pctl->mrrstat0) & 0x3) != 3) { debug("failed!"); return -EREMOTEIO; } } } if (-1 == data_training(chan, channel, sdram_params)) { if (sdram_params->base.dramtype == LPDDR3) { ddr_phy_ctl_reset(dram->cru, channel, 1); udelay(10); ddr_phy_ctl_reset(dram->cru, channel, 0); udelay(10); } debug("failed!"); return -EIO; } if (sdram_params->base.dramtype == LPDDR3) { u32 i; writel(0, &pctl->mrrcfg0); for (i = 0; i < 17; i++) send_command_op(pctl, 1, MRR_CMD, i, 0); } move_to_access_state(chan); } dram_all_config(dram, sdram_params); debug("%s done\n", __func__); return 0; } #endif size_t sdram_size_mb(struct rk3288_pmu *pmu) { u32 rank, col, bk, cs0_row, cs1_row, bw, row_3_4; size_t chipsize_mb = 0; size_t size_mb = 0; u32 ch; u32 sys_reg = readl(&pmu->sys_reg[2]); u32 chans; chans = 1 + ((sys_reg >> SYS_REG_NUM_CH_SHIFT) & SYS_REG_NUM_CH_MASK); for (ch = 0; ch < chans; ch++) { rank = 1 + (sys_reg >> SYS_REG_RANK_SHIFT(ch) & SYS_REG_RANK_MASK); col = 9 + (sys_reg >> SYS_REG_COL_SHIFT(ch) & SYS_REG_COL_MASK); bk = sys_reg & (1 << SYS_REG_BK_SHIFT(ch)) ? 3 : 0; cs0_row = 13 + (sys_reg >> SYS_REG_CS0_ROW_SHIFT(ch) & SYS_REG_CS0_ROW_MASK); cs1_row = 13 + (sys_reg >> SYS_REG_CS1_ROW_SHIFT(ch) & SYS_REG_CS1_ROW_MASK); bw = (sys_reg >> SYS_REG_BW_SHIFT(ch)) & SYS_REG_BW_MASK; row_3_4 = sys_reg >> SYS_REG_ROW_3_4_SHIFT(ch) & SYS_REG_ROW_3_4_MASK; chipsize_mb = (1 << (cs0_row + col + bk + bw - 20)); if (rank > 1) chipsize_mb += chipsize_mb >> (cs0_row - cs1_row); if (row_3_4) chipsize_mb = chipsize_mb * 3 / 4; size_mb += chipsize_mb; } /* * we use the 0x00000000~0xfeffffff space since 0xff000000~0xffffffff * is SoC register space (i.e. reserved) */ size_mb = min(size_mb, 0xff000000 >> 20); return size_mb; } #ifdef CONFIG_SPL_BUILD static int setup_sdram(struct udevice *dev) { struct dram_info *priv = dev_get_priv(dev); struct rk3288_sdram_params params; const void *blob = gd->fdt_blob; int node = dev->of_offset; int i, ret; params.num_channels = fdtdec_get_int(blob, node, "rockchip,num-channels", 1); for (i = 0; i < params.num_channels; i++) { ret = fdtdec_get_byte_array(blob, node, "rockchip,sdram-channel", (u8 *)¶ms.ch[i], sizeof(params.ch[i])); if (ret) { debug("%s: Cannot read rockchip,sdram-channel\n", __func__); return -EINVAL; } } ret = fdtdec_get_int_array(blob, node, "rockchip,pctl-timing", (u32 *)¶ms.pctl_timing, sizeof(params.pctl_timing) / sizeof(u32)); if (ret) { debug("%s: Cannot read rockchip,pctl-timing\n", __func__); return -EINVAL; } ret = fdtdec_get_int_array(blob, node, "rockchip,phy-timing", (u32 *)¶ms.phy_timing, sizeof(params.phy_timing) / sizeof(u32)); if (ret) { debug("%s: Cannot read rockchip,phy-timing\n", __func__); return -EINVAL; } ret = fdtdec_get_int_array(blob, node, "rockchip,sdram-params", (u32 *)¶ms.base, sizeof(params.base) / sizeof(u32)); if (ret) { debug("%s: Cannot read rockchip,sdram-params\n", __func__); return -EINVAL; } return sdram_init(priv, ¶ms); } #endif static int rk3288_dmc_probe(struct udevice *dev) { struct dram_info *priv = dev_get_priv(dev); struct regmap *map; int ret; map = syscon_get_regmap_by_driver_data(ROCKCHIP_SYSCON_NOC); if (IS_ERR(map)) return PTR_ERR(map); priv->chan[0].msch = regmap_get_range(map, 0); priv->chan[1].msch = (struct rk3288_msch *) (regmap_get_range(map, 0) + 0x80); priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); priv->sgrf = syscon_get_first_range(ROCKCHIP_SYSCON_SGRF); priv->pmu = syscon_get_first_range(ROCKCHIP_SYSCON_PMU); ret = regmap_init_mem(dev, &map); if (ret) return ret; priv->chan[0].pctl = regmap_get_range(map, 0); priv->chan[0].publ = regmap_get_range(map, 1); priv->chan[1].pctl = regmap_get_range(map, 2); priv->chan[1].publ = regmap_get_range(map, 3); ret = uclass_get_device(UCLASS_CLK, CLK_DDR, &priv->ddr_clk); if (ret) return ret; priv->cru = rockchip_get_cru(); if (IS_ERR(priv->cru)) return PTR_ERR(priv->cru); #ifdef CONFIG_SPL_BUILD ret = setup_sdram(dev); if (ret) return ret; #endif priv->info.base = 0; priv->info.size = sdram_size_mb(priv->pmu) << 20; return 0; } static int rk3288_dmc_get_info(struct udevice *dev, struct ram_info *info) { struct dram_info *priv = dev_get_priv(dev); *info = priv->info; return 0; } static struct ram_ops rk3288_dmc_ops = { .get_info = rk3288_dmc_get_info, }; static const struct udevice_id rk3288_dmc_ids[] = { { .compatible = "rockchip,rk3288-dmc" }, { } }; U_BOOT_DRIVER(dmc_rk3288) = { .name = "rk3288_dmc", .id = UCLASS_RAM, .of_match = rk3288_dmc_ids, .ops = &rk3288_dmc_ops, .probe = rk3288_dmc_probe, .priv_auto_alloc_size = sizeof(struct dram_info), };