/* * Clock drivers for Qualcomm APQ8016 * * (C) Copyright 2015 Mateusz Kulikowski <mateusz.kulikowski@gmail.com> * * Based on Little Kernel driver, simplified * * SPDX-License-Identifier: BSD-3-Clause */ #include <common.h> #include <clk-uclass.h> #include <dm.h> #include <errno.h> #include <asm/io.h> #include <linux/bitops.h> /* GPLL0 clock control registers */ #define GPLL0_STATUS 0x2101C #define GPLL0_STATUS_ACTIVE BIT(17) #define APCS_GPLL_ENA_VOTE 0x45000 #define APCS_GPLL_ENA_VOTE_GPLL0 BIT(0) /* vote reg for blsp1 clock */ #define APCS_CLOCK_BRANCH_ENA_VOTE 0x45004 #define APCS_CLOCK_BRANCH_ENA_VOTE_BLSP1 BIT(10) /* SDC(n) clock control registers; n=1,2 */ /* block control register */ #define SDCC_BCR(n) ((n * 0x1000) + 0x41000) /* cmd */ #define SDCC_CMD_RCGR(n) ((n * 0x1000) + 0x41004) /* cfg */ #define SDCC_CFG_RCGR(n) ((n * 0x1000) + 0x41008) /* m */ #define SDCC_M(n) ((n * 0x1000) + 0x4100C) /* n */ #define SDCC_N(n) ((n * 0x1000) + 0x41010) /* d */ #define SDCC_D(n) ((n * 0x1000) + 0x41014) /* branch control */ #define SDCC_APPS_CBCR(n) ((n * 0x1000) + 0x41018) #define SDCC_AHB_CBCR(n) ((n * 0x1000) + 0x4101C) /* BLSP1 AHB clock (root clock for BLSP) */ #define BLSP1_AHB_CBCR 0x1008 /* Uart clock control registers */ #define BLSP1_UART2_BCR 0x3028 #define BLSP1_UART2_APPS_CBCR 0x302C #define BLSP1_UART2_APPS_CMD_RCGR 0x3034 #define BLSP1_UART2_APPS_CFG_RCGR 0x3038 #define BLSP1_UART2_APPS_M 0x303C #define BLSP1_UART2_APPS_N 0x3040 #define BLSP1_UART2_APPS_D 0x3044 /* CBCR register fields */ #define CBCR_BRANCH_ENABLE_BIT BIT(0) #define CBCR_BRANCH_OFF_BIT BIT(31) struct msm_clk_priv { phys_addr_t base; }; /* Enable clock controlled by CBC soft macro */ static void clk_enable_cbc(phys_addr_t cbcr) { setbits_le32(cbcr, CBCR_BRANCH_ENABLE_BIT); while (readl(cbcr) & CBCR_BRANCH_OFF_BIT) ; } /* clock has 800MHz */ static void clk_enable_gpll0(phys_addr_t base) { if (readl(base + GPLL0_STATUS) & GPLL0_STATUS_ACTIVE) return; /* clock already enabled */ setbits_le32(base + APCS_GPLL_ENA_VOTE, APCS_GPLL_ENA_VOTE_GPLL0); while ((readl(base + GPLL0_STATUS) & GPLL0_STATUS_ACTIVE) == 0) ; } #define APPS_CMD_RGCR_UPDATE BIT(0) /* Update clock command via CMD_RGCR */ static void clk_bcr_update(phys_addr_t apps_cmd_rgcr) { setbits_le32(apps_cmd_rgcr, APPS_CMD_RGCR_UPDATE); /* Wait for frequency to be updated. */ while (readl(apps_cmd_rgcr) & APPS_CMD_RGCR_UPDATE) ; } struct bcr_regs { uintptr_t cfg_rcgr; uintptr_t cmd_rcgr; uintptr_t M; uintptr_t N; uintptr_t D; }; /* RCGR_CFG register fields */ #define CFG_MODE_DUAL_EDGE (0x2 << 12) /* Counter mode */ /* sources */ #define CFG_CLK_SRC_CXO (0 << 8) #define CFG_CLK_SRC_GPLL0 (1 << 8) #define CFG_CLK_SRC_MASK (7 << 8) /* Mask for supported fields */ #define CFG_MASK 0x3FFF #define CFG_DIVIDER_MASK 0x1F /* root set rate for clocks with half integer and MND divider */ static void clk_rcg_set_rate_mnd(phys_addr_t base, const struct bcr_regs *regs, int div, int m, int n, int source) { uint32_t cfg; /* M value for MND divider. */ uint32_t m_val = m; /* NOT(N-M) value for MND divider. */ uint32_t n_val = ~((n)-(m)) * !!(n); /* NOT 2D value for MND divider. */ uint32_t d_val = ~(n); /* Program MND values */ writel(m_val, base + regs->M); writel(n_val, base + regs->N); writel(d_val, base + regs->D); /* setup src select and divider */ cfg = readl(base + regs->cfg_rcgr); cfg &= ~CFG_MASK; cfg |= source & CFG_CLK_SRC_MASK; /* Select clock source */ /* Set the divider; HW permits fraction dividers (+0.5), but for simplicity, we will support integers only */ if (div) cfg |= (2 * div - 1) & CFG_DIVIDER_MASK; if (n_val) cfg |= CFG_MODE_DUAL_EDGE; writel(cfg, base + regs->cfg_rcgr); /* Write new clock configuration */ /* Inform h/w to start using the new config. */ clk_bcr_update(base + regs->cmd_rcgr); } static const struct bcr_regs sdc_regs[] = { { .cfg_rcgr = SDCC_CFG_RCGR(1), .cmd_rcgr = SDCC_CMD_RCGR(1), .M = SDCC_M(1), .N = SDCC_N(1), .D = SDCC_D(1), }, { .cfg_rcgr = SDCC_CFG_RCGR(2), .cmd_rcgr = SDCC_CMD_RCGR(2), .M = SDCC_M(2), .N = SDCC_N(2), .D = SDCC_D(2), } }; /* Init clock for SDHCI controller */ static int clk_init_sdc(struct msm_clk_priv *priv, int slot, uint rate) { int div = 8; /* 100MHz default */ if (rate == 200000000) div = 4; clk_enable_cbc(priv->base + SDCC_AHB_CBCR(slot)); /* 800Mhz/div, gpll0 */ clk_rcg_set_rate_mnd(priv->base, &sdc_regs[slot], div, 0, 0, CFG_CLK_SRC_GPLL0); clk_enable_gpll0(priv->base); clk_enable_cbc(priv->base + SDCC_APPS_CBCR(slot)); return rate; } static const struct bcr_regs uart2_regs = { .cfg_rcgr = BLSP1_UART2_APPS_CFG_RCGR, .cmd_rcgr = BLSP1_UART2_APPS_CMD_RCGR, .M = BLSP1_UART2_APPS_M, .N = BLSP1_UART2_APPS_N, .D = BLSP1_UART2_APPS_D, }; /* Init UART clock, 115200 */ static int clk_init_uart(struct msm_clk_priv *priv) { /* Enable iface clk */ clk_enable_cbc(priv->base + BLSP1_AHB_CBCR); /* 7372800 uart block clock @ GPLL0 */ clk_rcg_set_rate_mnd(priv->base, &uart2_regs, 1, 144, 15625, CFG_CLK_SRC_GPLL0); clk_enable_gpll0(priv->base); /* Enable core clk */ clk_enable_cbc(priv->base + BLSP1_UART2_APPS_CBCR); return 0; } ulong msm_set_rate(struct clk *clk, ulong rate) { struct msm_clk_priv *priv = dev_get_priv(clk->dev); switch (clk->id) { case 0: /* SDC1 */ return clk_init_sdc(priv, 0, rate); break; case 1: /* SDC2 */ return clk_init_sdc(priv, 1, rate); break; case 4: /* UART2 */ return clk_init_uart(priv); break; default: return 0; } } static int msm_clk_probe(struct udevice *dev) { struct msm_clk_priv *priv = dev_get_priv(dev); priv->base = devfdt_get_addr(dev); if (priv->base == FDT_ADDR_T_NONE) return -EINVAL; return 0; } static struct clk_ops msm_clk_ops = { .set_rate = msm_set_rate, }; static const struct udevice_id msm_clk_ids[] = { { .compatible = "qcom,gcc-msm8916" }, { .compatible = "qcom,gcc-apq8016" }, { } }; U_BOOT_DRIVER(clk_msm) = { .name = "clk_msm", .id = UCLASS_CLK, .of_match = msm_clk_ids, .ops = &msm_clk_ops, .priv_auto_alloc_size = sizeof(struct msm_clk_priv), .probe = msm_clk_probe, };