/* * sun9i specific clock code * * (C) Copyright 2015 Hans de Goede <hdegoede@redhat.com> * * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH * Philipp Tomsich <philipp.tomsich@theobroma-systems.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <asm/io.h> #include <asm/arch/clock.h> #include <asm/arch/prcm.h> #include <asm/arch/sys_proto.h> #ifdef CONFIG_SPL_BUILD void clock_init_safe(void) { struct sunxi_ccm_reg * const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; /* Set up PLL12 (peripheral 1) */ clock_set_pll12(1200000000); /* Set up PLL1 (cluster 0) and PLL2 (cluster 1) */ clock_set_pll1(408000000); clock_set_pll2(408000000); /* Set up PLL4 (peripheral 0) */ clock_set_pll4(960000000); /* Set up dividers for AXI0 and APB0 on cluster 0: PLL1 / 2 = 204MHz */ writel(C0_CFG_AXI0_CLK_DIV_RATIO(2) | C0_CFG_APB0_CLK_DIV_RATIO(2), &ccm->c0_cfg); /* AHB0: 120 MHz (PLL_PERIPH0 / 8) */ writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8), &ccm->ahb0_cfg); /* AHB1: 240 MHz (PLL_PERIPH0 / 4) */ writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(4), &ccm->ahb1_cfg); /* AHB2: 120 MHz (PLL_PERIPH0 / 8) */ writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8), &ccm->ahb2_cfg); /* APB0: 120 MHz (PLL_PERIPH0 / 8) */ writel(APB0_SRC_PLL_PERIPH0 | APB0_CLK_DIV_RATIO(8), &ccm->apb0_cfg); /* GTBUS: 400MHz (PERIPH0 div 3) */ writel(GTBUS_SRC_PLL_PERIPH1 | GTBUS_CLK_DIV_RATIO(3), &ccm->gtbus_cfg); /* CCI400: 480MHz (PERIPH1 div 2) */ writel(CCI400_SRC_PLL_PERIPH0 | CCI400_CLK_DIV_RATIO(2), &ccm->cci400_cfg); /* Deassert DMA reset and open clock gating for DMA */ setbits_le32(&ccm->ahb_reset1_cfg, (1 << 24)); setbits_le32(&ccm->apb1_gate, (1 << 24)); /* set enable-bit in TSTAMP_CTRL_REG */ writel(1, 0x01720000); } #endif void clock_init_uart(void) { struct sunxi_ccm_reg *const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; /* open the clock for uart */ setbits_le32(&ccm->apb1_gate, CLK_GATE_OPEN << (APB1_GATE_UART_SHIFT + CONFIG_CONS_INDEX - 1)); /* deassert uart reset */ setbits_le32(&ccm->apb1_reset_cfg, 1 << (APB1_RESET_UART_SHIFT + CONFIG_CONS_INDEX - 1)); } #ifdef CONFIG_SPL_BUILD void clock_set_pll1(unsigned int clk) { struct sunxi_ccm_reg * const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; const int p = 0; /* Switch cluster 0 to 24MHz clock while changing PLL1 */ clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK, C0_CPUX_CLK_SRC_OSC24M); writel(CCM_PLL1_CTRL_EN | CCM_PLL1_CTRL_P(p) | CCM_PLL1_CLOCK_TIME_2 | CCM_PLL1_CTRL_N(clk / 24000000), &ccm->pll1_c0_cfg); /* * Don't bother with the stable-time registers, as it doesn't * wait until the PLL is stable. Note, that even Allwinner * just uses a delay loop (or rather the AVS timer) for this * instead of the PLL_STABLE_STATUS register. */ sdelay(2000); /* Switch cluster 0 back to PLL1 */ clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK, C0_CPUX_CLK_SRC_PLL1); } void clock_set_pll2(unsigned int clk) { struct sunxi_ccm_reg * const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; const int p = 0; /* Switch cluster 1 to 24MHz clock while changing PLL2 */ clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK, C1_CPUX_CLK_SRC_OSC24M); writel(CCM_PLL2_CTRL_EN | CCM_PLL2_CTRL_P(p) | CCM_PLL2_CLOCK_TIME_2 | CCM_PLL2_CTRL_N(clk / 24000000), &ccm->pll2_c1_cfg); sdelay(2000); /* Switch cluster 1 back to PLL2 */ clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK, C1_CPUX_CLK_SRC_PLL2); } void clock_set_pll6(unsigned int clk) { struct sunxi_ccm_reg * const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; const int p = 0; writel(CCM_PLL6_CTRL_EN | CCM_PLL6_CFG_UPDATE | CCM_PLL6_CTRL_P(p) | CCM_PLL6_CTRL_N(clk / 24000000), &ccm->pll6_ddr_cfg); do { } while (!(readl(&ccm->pll_stable_status) & PLL_DDR_STATUS)); sdelay(2000); } void clock_set_pll12(unsigned int clk) { struct sunxi_ccm_reg * const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; if (readl(&ccm->pll12_periph1_cfg) & CCM_PLL12_CTRL_EN) return; writel(CCM_PLL12_CTRL_EN | CCM_PLL12_CTRL_N(clk / 24000000), &ccm->pll12_periph1_cfg); sdelay(2000); } void clock_set_pll4(unsigned int clk) { struct sunxi_ccm_reg * const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; writel(CCM_PLL4_CTRL_EN | CCM_PLL4_CTRL_N(clk / 24000000), &ccm->pll4_periph0_cfg); sdelay(2000); } #endif int clock_twi_onoff(int port, int state) { struct sunxi_ccm_reg *const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; if (port > 4) return -1; /* set the apb reset and clock gate for twi */ if (state) { setbits_le32(&ccm->apb1_gate, CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port)); setbits_le32(&ccm->apb1_reset_cfg, 1 << (APB1_RESET_TWI_SHIFT + port)); } else { clrbits_le32(&ccm->apb1_reset_cfg, 1 << (APB1_RESET_TWI_SHIFT + port)); clrbits_le32(&ccm->apb1_gate, CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port)); } return 0; } unsigned int clock_get_pll4_periph0(void) { struct sunxi_ccm_reg *const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; uint32_t rval = readl(&ccm->pll4_periph0_cfg); int n = ((rval & CCM_PLL4_CTRL_N_MASK) >> CCM_PLL4_CTRL_N_SHIFT); int p = ((rval & CCM_PLL4_CTRL_P_MASK) >> CCM_PLL4_CTRL_P_SHIFT); int m = ((rval & CCM_PLL4_CTRL_M_MASK) >> CCM_PLL4_CTRL_M_SHIFT) + 1; const int k = 1; return ((24000000 * n * k) >> p) / m; }