/* * (C) Copyright 2010-2015 * NVIDIA Corporation <www.nvidia.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <dm.h> #include <ns16550.h> #include <spl.h> #include <asm/io.h> #include <asm/arch/clock.h> #include <asm/arch/funcmux.h> #include <asm/arch/mc.h> #include <asm/arch/tegra.h> #include <asm/arch-tegra/ap.h> #include <asm/arch-tegra/board.h> #include <asm/arch-tegra/pmc.h> #include <asm/arch-tegra/sys_proto.h> #include <asm/arch-tegra/warmboot.h> void save_boot_params_ret(void); DECLARE_GLOBAL_DATA_PTR; enum { /* UARTs which we can enable */ UARTA = 1 << 0, UARTB = 1 << 1, UARTC = 1 << 2, UARTD = 1 << 3, UARTE = 1 << 4, UART_COUNT = 5, }; static bool from_spl __attribute__ ((section(".data"))); #ifndef CONFIG_SPL_BUILD void save_boot_params(u32 r0, u32 r1, u32 r2, u32 r3) { from_spl = r0 != UBOOT_NOT_LOADED_FROM_SPL; save_boot_params_ret(); } #endif bool spl_was_boot_source(void) { return from_spl; } #if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE) #if !defined(CONFIG_TEGRA124) #error tegra_cpu_is_non_secure has only been validated on Tegra124 #endif bool tegra_cpu_is_non_secure(void) { /* * This register reads 0xffffffff in non-secure mode. This register * only implements bits 31:20, so the lower bits will always read 0 in * secure mode. Thus, the lower bits are an indicator for secure vs. * non-secure mode. */ struct mc_ctlr *mc = (struct mc_ctlr *)NV_PA_MC_BASE; uint32_t mc_s_cfg0 = readl(&mc->mc_security_cfg0); return (mc_s_cfg0 & 1) == 1; } #endif /* Read the RAM size directly from the memory controller */ static phys_size_t query_sdram_size(void) { struct mc_ctlr *const mc = (struct mc_ctlr *)NV_PA_MC_BASE; u32 emem_cfg; phys_size_t size_bytes; emem_cfg = readl(&mc->mc_emem_cfg); #if defined(CONFIG_TEGRA20) debug("mc->mc_emem_cfg (MEM_SIZE_KB) = 0x%08x\n", emem_cfg); size_bytes = get_ram_size((void *)PHYS_SDRAM_1, emem_cfg * 1024); #else debug("mc->mc_emem_cfg (MEM_SIZE_MB) = 0x%08x\n", emem_cfg); #ifndef CONFIG_PHYS_64BIT /* * If >=4GB RAM is present, the byte RAM size won't fit into 32-bits * and will wrap. Clip the reported size to the maximum that a 32-bit * variable can represent (rounded to a page). */ if (emem_cfg >= 4096) { size_bytes = U32_MAX & ~(0x1000 - 1); } else #endif { /* RAM size EMC is programmed to. */ size_bytes = (phys_size_t)emem_cfg * 1024 * 1024; #ifndef CONFIG_ARM64 /* * If all RAM fits within 32-bits, it can be accessed without * LPAE, so go test the RAM size. Otherwise, we can't access * all the RAM, and get_ram_size() would get confused, so * avoid using it. There's no reason we should need this * validation step anyway. */ if (emem_cfg <= (0 - PHYS_SDRAM_1) / (1024 * 1024)) size_bytes = get_ram_size((void *)PHYS_SDRAM_1, size_bytes); #endif } #endif #if defined(CONFIG_TEGRA30) || defined(CONFIG_TEGRA114) /* External memory limited to 2047 MB due to IROM/HI-VEC */ if (size_bytes == SZ_2G) size_bytes -= SZ_1M; #endif return size_bytes; } int dram_init(void) { /* We do not initialise DRAM here. We just query the size */ gd->ram_size = query_sdram_size(); return 0; } static int uart_configs[] = { #if defined(CONFIG_TEGRA20) #if defined(CONFIG_TEGRA_UARTA_UAA_UAB) FUNCMUX_UART1_UAA_UAB, #elif defined(CONFIG_TEGRA_UARTA_GPU) FUNCMUX_UART1_GPU, #elif defined(CONFIG_TEGRA_UARTA_SDIO1) FUNCMUX_UART1_SDIO1, #else FUNCMUX_UART1_IRRX_IRTX, #endif FUNCMUX_UART2_UAD, -1, FUNCMUX_UART4_GMC, -1, #elif defined(CONFIG_TEGRA30) FUNCMUX_UART1_ULPI, /* UARTA */ -1, -1, -1, -1, #elif defined(CONFIG_TEGRA114) -1, -1, -1, FUNCMUX_UART4_GMI, /* UARTD */ -1, #elif defined(CONFIG_TEGRA124) FUNCMUX_UART1_KBC, /* UARTA */ -1, -1, FUNCMUX_UART4_GPIO, /* UARTD */ -1, #else /* Tegra210 */ FUNCMUX_UART1_UART1, /* UARTA */ -1, -1, FUNCMUX_UART4_UART4, /* UARTD */ -1, #endif }; /** * Set up the specified uarts * * @param uarts_ids Mask containing UARTs to init (UARTx) */ static void setup_uarts(int uart_ids) { static enum periph_id id_for_uart[] = { PERIPH_ID_UART1, PERIPH_ID_UART2, PERIPH_ID_UART3, PERIPH_ID_UART4, PERIPH_ID_UART5, }; size_t i; for (i = 0; i < UART_COUNT; i++) { if (uart_ids & (1 << i)) { enum periph_id id = id_for_uart[i]; funcmux_select(id, uart_configs[i]); clock_ll_start_uart(id); } } } void board_init_uart_f(void) { int uart_ids = 0; /* bit mask of which UART ids to enable */ #ifdef CONFIG_TEGRA_ENABLE_UARTA uart_ids |= UARTA; #endif #ifdef CONFIG_TEGRA_ENABLE_UARTB uart_ids |= UARTB; #endif #ifdef CONFIG_TEGRA_ENABLE_UARTC uart_ids |= UARTC; #endif #ifdef CONFIG_TEGRA_ENABLE_UARTD uart_ids |= UARTD; #endif #ifdef CONFIG_TEGRA_ENABLE_UARTE uart_ids |= UARTE; #endif setup_uarts(uart_ids); } #if !CONFIG_IS_ENABLED(OF_CONTROL) static struct ns16550_platdata ns16550_com1_pdata = { .base = CONFIG_SYS_NS16550_COM1, .reg_shift = 2, .clock = CONFIG_SYS_NS16550_CLK, }; U_BOOT_DEVICE(ns16550_com1) = { "ns16550_serial", &ns16550_com1_pdata }; #endif #if !defined(CONFIG_SYS_DCACHE_OFF) && !defined(CONFIG_ARM64) void enable_caches(void) { /* Enable D-cache. I-cache is already enabled in start.S */ dcache_enable(); } #endif