// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2010-2019, NVIDIA CORPORATION. All rights reserved. */ /* Tegra SoC common clock control functions */ #include <common.h> #include <div64.h> #include <dm.h> #include <errno.h> #include <log.h> #include <time.h> #include <asm/io.h> #include <asm/arch/clock.h> #include <asm/arch/tegra.h> #include <asm/arch-tegra/ap.h> #include <asm/arch-tegra/clk_rst.h> #include <asm/arch-tegra/pmc.h> #include <asm/arch-tegra/timer.h> #include <linux/delay.h> /* * This is our record of the current clock rate of each clock. We don't * fill all of these in since we are only really interested in clocks which * we use as parents. */ static unsigned pll_rate[CLOCK_ID_COUNT]; /* * The oscillator frequency is fixed to one of four set values. Based on this * the other clocks are set up appropriately. */ static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = { 13000000, 19200000, 12000000, 26000000, 38400000, 48000000, }; /* return 1 if a peripheral ID is in range */ #define clock_type_id_isvalid(id) ((id) >= 0 && \ (id) < CLOCK_TYPE_COUNT) char pllp_valid = 1; /* PLLP is set up correctly */ /* return 1 if a periphc_internal_id is in range */ #define periphc_internal_id_isvalid(id) ((id) >= 0 && \ (id) < PERIPHC_COUNT) /* number of clock outputs of a PLL */ static const u8 pll_num_clkouts[] = { 1, /* PLLC */ 1, /* PLLM */ 4, /* PLLP */ 1, /* PLLA */ 0, /* PLLU */ 0, /* PLLD */ }; int clock_get_osc_bypass(void) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 reg; reg = readl(&clkrst->crc_osc_ctrl); return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT; } /* Returns a pointer to the registers of the given pll */ static struct clk_pll *get_pll(enum clock_id clkid) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; assert(clock_id_is_pll(clkid)); if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) { debug("%s: Invalid PLL %d\n", __func__, clkid); return NULL; } return &clkrst->crc_pll[clkid]; } __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid) { return NULL; } int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn, u32 *divp, u32 *cpcon, u32 *lfcon) { struct clk_pll *pll = get_pll(clkid); struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; u32 data; assert(clkid != CLOCK_ID_USB); /* Safety check, adds to code size but is small */ if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB) return -1; data = readl(&pll->pll_base); *divm = (data >> pllinfo->m_shift) & pllinfo->m_mask; *divn = (data >> pllinfo->n_shift) & pllinfo->n_mask; *divp = (data >> pllinfo->p_shift) & pllinfo->p_mask; data = readl(&pll->pll_misc); /* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */ *cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask; *lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask; return 0; } unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn, u32 divp, u32 cpcon, u32 lfcon) { struct clk_pll *pll = NULL; struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; struct clk_pll_simple *simple_pll = NULL; u32 misc_data, data; if (clkid < (enum clock_id)TEGRA_CLK_PLLS) { pll = get_pll(clkid); } else { simple_pll = clock_get_simple_pll(clkid); if (!simple_pll) { debug("%s: Uknown simple PLL %d\n", __func__, clkid); return 0; } } /* * pllinfo has the m/n/p and kcp/kvco mask and shift * values for all of the PLLs used in U-Boot, with any * SoC differences accounted for. * * Preserve EN_LOCKDET, etc. */ if (pll) misc_data = readl(&pll->pll_misc); else misc_data = readl(&simple_pll->pll_misc); misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift); misc_data |= cpcon << pllinfo->kcp_shift; misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift); misc_data |= lfcon << pllinfo->kvco_shift; data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift); data |= divp << pllinfo->p_shift; data |= (1 << PLL_ENABLE_SHIFT); /* BYPASS s/b 0 already */ if (pll) { writel(misc_data, &pll->pll_misc); writel(data, &pll->pll_base); } else { writel(misc_data, &simple_pll->pll_misc); writel(data, &simple_pll->pll_base); } /* calculate the stable time */ return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US; } void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source, unsigned divisor) { u32 *reg = get_periph_source_reg(periph_id); u32 value; value = readl(reg); value &= ~OUT_CLK_SOURCE_31_30_MASK; value |= source << OUT_CLK_SOURCE_31_30_SHIFT; value &= ~OUT_CLK_DIVISOR_MASK; value |= divisor << OUT_CLK_DIVISOR_SHIFT; writel(value, reg); } int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits, unsigned source) { u32 *reg = get_periph_source_reg(periph_id); switch (mux_bits) { case MASK_BITS_31_30: clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK, source << OUT_CLK_SOURCE_31_30_SHIFT); break; case MASK_BITS_31_29: clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK, source << OUT_CLK_SOURCE_31_29_SHIFT); break; case MASK_BITS_31_28: clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK, source << OUT_CLK_SOURCE_31_28_SHIFT); break; default: return -1; } return 0; } static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits) { u32 *reg = get_periph_source_reg(periph_id); u32 val = readl(reg); switch (mux_bits) { case MASK_BITS_31_30: val >>= OUT_CLK_SOURCE_31_30_SHIFT; val &= OUT_CLK_SOURCE_31_30_MASK; return val; case MASK_BITS_31_29: val >>= OUT_CLK_SOURCE_31_29_SHIFT; val &= OUT_CLK_SOURCE_31_29_MASK; return val; case MASK_BITS_31_28: val >>= OUT_CLK_SOURCE_31_28_SHIFT; val &= OUT_CLK_SOURCE_31_28_MASK; return val; default: return -1; } } void clock_ll_set_source(enum periph_id periph_id, unsigned source) { clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source); } /** * Given the parent's rate and the required rate for the children, this works * out the peripheral clock divider to use, in 7.1 binary format. * * @param divider_bits number of divider bits (8 or 16) * @param parent_rate clock rate of parent clock in Hz * @param rate required clock rate for this clock * @return divider which should be used */ static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate, unsigned long rate) { u64 divider = parent_rate * 2; unsigned max_divider = 1 << divider_bits; divider += rate - 1; do_div(divider, rate); if ((s64)divider - 2 < 0) return 0; if ((s64)divider - 2 >= max_divider) return -1; return divider - 2; } int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate) { struct clk_pll *pll = get_pll(clkid); int data = 0, div = 0, offset = 0; if (!clock_id_is_pll(clkid)) return -1; if (pllout + 1 > pll_num_clkouts[clkid]) return -1; div = clk_get_divider(8, pll_rate[clkid], rate); if (div < 0) return -1; /* out2 and out4 are in the high part of the register */ if (pllout == PLL_OUT2 || pllout == PLL_OUT4) offset = 16; data = (div << PLL_OUT_RATIO_SHIFT) | PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN; clrsetbits_le32(&pll->pll_out[pllout >> 1], PLL_OUT_RATIO_MASK << offset, data << offset); return 0; } /** * Given the parent's rate and the divider in 7.1 format, this works out the * resulting peripheral clock rate. * * @param parent_rate clock rate of parent clock in Hz * @param divider which should be used in 7.1 format * @return effective clock rate of peripheral */ static unsigned long get_rate_from_divider(unsigned long parent_rate, int divider) { u64 rate; rate = (u64)parent_rate * 2; do_div(rate, divider + 2); return rate; } unsigned long clock_get_periph_rate(enum periph_id periph_id, enum clock_id parent) { u32 *reg = get_periph_source_reg(periph_id); unsigned parent_rate = pll_rate[parent]; int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT; switch (periph_id) { case PERIPH_ID_UART1: case PERIPH_ID_UART2: case PERIPH_ID_UART3: case PERIPH_ID_UART4: case PERIPH_ID_UART5: #ifdef CONFIG_TEGRA20 /* There's no divider for these clocks in this SoC. */ return parent_rate; #else /* * This undoes the +2 in get_rate_from_divider() which I * believe is incorrect. Ideally we would fix * get_rate_from_divider(), but... Removing the +2 from * get_rate_from_divider() would probably require remove the -2 * from the tail of clk_get_divider() since I believe that's * only there to invert get_rate_from_divider()'s +2. Observe * how find_best_divider() uses those two functions together. * However, doing so breaks other stuff, such as Seaboard's * display, likely due to clock_set_pllout()'s call to * clk_get_divider(). Attempting to fix that by making * clock_set_pllout() subtract 2 from clk_get_divider()'s * return value doesn't help. In summary this clock driver is * quite broken but I'm afraid I have no idea how to fix it * without completely replacing it. * * Be careful to avoid a divide by zero error. */ if (div >= 1) div -= 2; break; #endif default: break; } return get_rate_from_divider(parent_rate, div); } /** * Find the best available 7.1 format divisor given a parent clock rate and * required child clock rate. This function assumes that a second-stage * divisor is available which can divide by powers of 2 from 1 to 256. * * @param divider_bits number of divider bits (8 or 16) * @param parent_rate clock rate of parent clock in Hz * @param rate required clock rate for this clock * @param extra_div value for the second-stage divisor (not set if this * function returns -1. * @return divider which should be used, or -1 if nothing is valid * */ static int find_best_divider(unsigned divider_bits, unsigned long parent_rate, unsigned long rate, int *extra_div) { int shift; int best_divider = -1; int best_error = rate; /* try dividers from 1 to 256 and find closest match */ for (shift = 0; shift <= 8 && best_error > 0; shift++) { unsigned divided_parent = parent_rate >> shift; int divider = clk_get_divider(divider_bits, divided_parent, rate); unsigned effective_rate = get_rate_from_divider(divided_parent, divider); int error = rate - effective_rate; /* Given a valid divider, look for the lowest error */ if (divider != -1 && error < best_error) { best_error = error; *extra_div = 1 << shift; best_divider = divider; } } /* return what we found - *extra_div will already be set */ return best_divider; } /** * Adjust peripheral PLL to use the given divider and source. * * @param periph_id peripheral to adjust * @param source Source number (0-3 or 0-7) * @param mux_bits Number of mux bits (2 or 4) * @param divider Required divider in 7.1 or 15.1 format * @return 0 if ok, -1 on error (requesting a parent clock which is not valid * for this peripheral) */ static int adjust_periph_pll(enum periph_id periph_id, int source, int mux_bits, unsigned divider) { u32 *reg = get_periph_source_reg(periph_id); clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK, divider << OUT_CLK_DIVISOR_SHIFT); udelay(1); /* work out the source clock and set it */ if (source < 0) return -1; clock_ll_set_source_bits(periph_id, mux_bits, source); udelay(2); return 0; } enum clock_id clock_get_periph_parent(enum periph_id periph_id) { int err, mux_bits, divider_bits, type; int source; err = get_periph_clock_info(periph_id, &mux_bits, ÷r_bits, &type); if (err) return CLOCK_ID_NONE; source = clock_ll_get_source_bits(periph_id, mux_bits); return get_periph_clock_id(periph_id, source); } unsigned clock_adjust_periph_pll_div(enum periph_id periph_id, enum clock_id parent, unsigned rate, int *extra_div) { unsigned effective_rate; int mux_bits, divider_bits, source; int divider; int xdiv = 0; /* work out the source clock and set it */ source = get_periph_clock_source(periph_id, parent, &mux_bits, ÷r_bits); divider = find_best_divider(divider_bits, pll_rate[parent], rate, &xdiv); if (extra_div) *extra_div = xdiv; assert(divider >= 0); if (adjust_periph_pll(periph_id, source, mux_bits, divider)) return -1U; debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate, get_periph_source_reg(periph_id), readl(get_periph_source_reg(periph_id))); /* Check what we ended up with. This shouldn't matter though */ effective_rate = clock_get_periph_rate(periph_id, parent); if (extra_div) effective_rate /= *extra_div; if (rate != effective_rate) debug("Requested clock rate %u not honored (got %u)\n", rate, effective_rate); return effective_rate; } unsigned clock_start_periph_pll(enum periph_id periph_id, enum clock_id parent, unsigned rate) { unsigned effective_rate; reset_set_enable(periph_id, 1); clock_enable(periph_id); udelay(2); effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate, NULL); reset_set_enable(periph_id, 0); return effective_rate; } void clock_enable(enum periph_id clkid) { clock_set_enable(clkid, 1); } void clock_disable(enum periph_id clkid) { clock_set_enable(clkid, 0); } void reset_periph(enum periph_id periph_id, int us_delay) { /* Put peripheral into reset */ reset_set_enable(periph_id, 1); udelay(us_delay); /* Remove reset */ reset_set_enable(periph_id, 0); udelay(us_delay); } void reset_cmplx_set_enable(int cpu, int which, int reset) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 mask; /* Form the mask, which depends on the cpu chosen (2 or 4) */ assert(cpu >= 0 && cpu < MAX_NUM_CPU); mask = which << cpu; /* either enable or disable those reset for that CPU */ if (reset) writel(mask, &clkrst->crc_cpu_cmplx_set); else writel(mask, &clkrst->crc_cpu_cmplx_clr); } unsigned int __weak clk_m_get_rate(unsigned int parent_rate) { return parent_rate; } unsigned clock_get_rate(enum clock_id clkid) { struct clk_pll *pll; u32 base, divm; u64 parent_rate, rate; struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; parent_rate = osc_freq[clock_get_osc_freq()]; if (clkid == CLOCK_ID_OSC) return parent_rate; if (clkid == CLOCK_ID_CLK_M) return clk_m_get_rate(parent_rate); pll = get_pll(clkid); if (!pll) return 0; base = readl(&pll->pll_base); rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask); divm = (base >> pllinfo->m_shift) & pllinfo->m_mask; /* * PLLU uses p_mask/p_shift for VCO on all but T210, * T210 uses normal DIVP. Handled in pllinfo table. */ #ifdef CONFIG_TEGRA210 /* * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is * not applied. pllP_out2 does have divp applied. All other pllP_outN * are divided down from pllP_out0. We only support pllP_out0 in * U-Boot at the time of writing this comment. */ if (clkid != CLOCK_ID_PERIPH) #endif divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask; do_div(rate, divm); return rate; } /** * Set the output frequency you want for each PLL clock. * PLL output frequencies are programmed by setting their N, M and P values. * The governing equations are: * VCO = (Fi / m) * n, Fo = VCO / (2^p) * where Fo is the output frequency from the PLL. * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi) * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming * * @param n PLL feedback divider(DIVN) * @param m PLL input divider(DIVN) * @param p post divider(DIVP) * @param cpcon base PLL charge pump(CPCON) * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot * be overridden), 1 if PLL is already correct */ int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon) { u32 base_reg, misc_reg; struct clk_pll *pll; struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; pll = get_pll(clkid); base_reg = readl(&pll->pll_base); /* Set BYPASS, m, n and p to PLL_BASE */ base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift); base_reg |= m << pllinfo->m_shift; base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift); base_reg |= n << pllinfo->n_shift; base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift); base_reg |= p << pllinfo->p_shift; if (clkid == CLOCK_ID_PERIPH) { /* * If the PLL is already set up, check that it is correct * and record this info for clock_verify() to check. */ if (base_reg & PLL_BASE_OVRRIDE_MASK) { base_reg |= PLL_ENABLE_MASK; if (base_reg != readl(&pll->pll_base)) pllp_valid = 0; return pllp_valid ? 1 : -1; } base_reg |= PLL_BASE_OVRRIDE_MASK; } base_reg |= PLL_BYPASS_MASK; writel(base_reg, &pll->pll_base); /* Set cpcon (KCP) to PLL_MISC */ misc_reg = readl(&pll->pll_misc); misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift); misc_reg |= cpcon << pllinfo->kcp_shift; writel(misc_reg, &pll->pll_misc); /* Enable PLL */ base_reg |= PLL_ENABLE_MASK; writel(base_reg, &pll->pll_base); /* Disable BYPASS */ base_reg &= ~PLL_BYPASS_MASK; writel(base_reg, &pll->pll_base); return 0; } void clock_ll_start_uart(enum periph_id periph_id) { /* Assert UART reset and enable clock */ reset_set_enable(periph_id, 1); clock_enable(periph_id); clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */ /* wait for 2us */ udelay(2); /* De-assert reset to UART */ reset_set_enable(periph_id, 0); } #if CONFIG_IS_ENABLED(OF_CONTROL) int clock_decode_periph_id(struct udevice *dev) { enum periph_id id; u32 cell[2]; int err; err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell)); if (err) return -1; id = clk_id_to_periph_id(cell[1]); assert(clock_periph_id_isvalid(id)); return id; } #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ int clock_verify(void) { struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH); u32 reg = readl(&pll->pll_base); if (!pllp_valid) { printf("Warning: PLLP %x is not correct\n", reg); return -1; } debug("PLLP %x is correct\n", reg); return 0; } void clock_init(void) { int i; pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL); pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY); pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH); pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB); pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY); pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU); pll_rate[CLOCK_ID_SFROM32KHZ] = 32768; pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC); pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M); debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]); debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]); debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]); debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]); debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]); debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]); debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]); debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]); for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) { enum periph_id periph_id; enum clock_id parent; int source, mux_bits, divider_bits; periph_id = periph_clk_init_table[i].periph_id; parent = periph_clk_init_table[i].parent_clock_id; source = get_periph_clock_source(periph_id, parent, &mux_bits, ÷r_bits); clock_ll_set_source_bits(periph_id, mux_bits, source); } } static void set_avp_clock_source(u32 src) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 val; val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) | (src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) | (src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) | (src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) | (SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT); writel(val, &clkrst->crc_sclk_brst_pol); udelay(3); } /* * This function is useful on Tegra30, and any later SoCs that have compatible * PLLP configuration registers. * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c */ void tegra30_set_up_pllp(void) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 reg; /* * Based on the Tegra TRM, the system clock (which is the AVP clock) can * run up to 275MHz. On power on, the default sytem clock source is set * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to * 408MHz which is beyond system clock's upper limit. * * The fix is to set the system clock to CLK_M before initializing PLLP, * and then switch back to PLLP_OUT4, which has an appropriate divider * configured, after PLLP has been configured */ set_avp_clock_source(SCLK_SOURCE_CLKM); /* * PLLP output frequency set to 408Mhz * PLLC output frequency set to 228Mhz */ switch (clock_get_osc_freq()) { case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */ clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8); clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8); break; case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */ clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8); clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8); break; case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */ clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8); clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8); break; case CLOCK_OSC_FREQ_19_2: default: /* * These are not supported. It is too early to print a * message and the UART likely won't work anyway due to the * oscillator being wrong. */ break; } /* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */ /* OUT1, 2 */ /* Assert RSTN before enable */ reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN; writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]); /* Set divisor and reenable */ reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) | PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS; writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]); /* OUT3, 4 */ /* Assert RSTN before enable */ reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN; writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]); /* Set divisor and reenable */ reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS; writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]); set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4); } int clock_external_output(int clk_id) { u32 val; if (clk_id >= 1 && clk_id <= 3) { val = tegra_pmc_readl(offsetof(struct pmc_ctlr, pmc_clk_out_cntrl)); val |= 1 << (2 + (clk_id - 1) * 8); tegra_pmc_writel(val, offsetof(struct pmc_ctlr, pmc_clk_out_cntrl)); } else { printf("%s: Unknown output clock id %d\n", __func__, clk_id); return -EINVAL; } return 0; } __weak bool clock_early_init_done(void) { return true; }