// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015-2017 Socionext Inc. * Author: Masahiro Yamada <yamada.masahiro@socionext.com> * * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by: * Copyright (C) 2015 Socionext Inc. */ #include <linux/delay.h> #include <linux/errno.h> #include <linux/io.h> #include <linux/printk.h> #include <linux/sizes.h> #include <asm/processor.h> #include <time.h> #include "../init.h" #include "../soc-info.h" #include "ddrmphy-regs.h" #include "umc-regs.h" #define DRAM_CH_NR 3 enum dram_freq { DRAM_FREQ_1866M, DRAM_FREQ_2133M, DRAM_FREQ_NR, }; enum dram_size { DRAM_SZ_256M, DRAM_SZ_512M, DRAM_SZ_NR, }; /* PHY */ static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB}; static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6}; static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1}; static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357}; static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157}; static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88}; static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0}; static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00}; static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89}; static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125}; static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8}; /* dependent on package and board design */ static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009}; /* DDR multiPHY */ static inline int ddrphy_get_rank(int dx) { return dx / 2; } static void ddrphy_fifo_reset(void __iomem *phy_base) { u32 tmp; tmp = readl(phy_base + MPHY_PGCR0); tmp &= ~MPHY_PGCR0_PHYFRST; writel(tmp, phy_base + MPHY_PGCR0); udelay(1); tmp |= MPHY_PGCR0_PHYFRST; writel(tmp, phy_base + MPHY_PGCR0); udelay(1); } static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable) { u32 tmp; tmp = readl(phy_base + MPHY_PGCR1); if (enable) tmp &= ~MPHY_PGCR1_INHVT; else tmp |= MPHY_PGCR1_INHVT; writel(tmp, phy_base + MPHY_PGCR1); if (!enable) { while (!(readl(phy_base + MPHY_PGSR1) & MPHY_PGSR1_VTSTOP)) cpu_relax(); } } static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step) { int dx; u32 lcdlr1, rdqsd; void __iomem *dx_base = phy_base + MPHY_DX_BASE; ddrphy_vt_ctrl(phy_base, 0); for (dx = 0; dx < nr_dx; dx++) { lcdlr1 = readl(dx_base + MPHY_DX_LCDLR1); rdqsd = (lcdlr1 >> 8) & 0xff; rdqsd = clamp(rdqsd + step, 0U, 0xffU); lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8); writel(lcdlr1, dx_base + MPHY_DX_LCDLR1); readl(dx_base + MPHY_DX_LCDLR1); /* relax */ dx_base += MPHY_DX_STRIDE; } ddrphy_vt_ctrl(phy_base, 1); } static int ddrphy_get_system_latency(void __iomem *phy_base, int width) { void __iomem *dx_base = phy_base + MPHY_DX_BASE; const int nr_dx = width / 8; int dx, rank; u32 gtr; int dgsl, dgsl_min = INT_MAX, dgsl_max = 0; for (dx = 0; dx < nr_dx; dx++) { gtr = readl(dx_base + MPHY_DX_GTR); for (rank = 0; rank < 4; rank++) { dgsl = gtr & 0x7; /* if dgsl is zero, this rank was not trained. skip. */ if (dgsl) { dgsl_min = min(dgsl_min, dgsl); dgsl_max = max(dgsl_max, dgsl); } gtr >>= 3; } dx_base += MPHY_DX_STRIDE; } if (dgsl_min != dgsl_max) pr_warn("DQS Gateing System Latencies are not all leveled.\n"); return dgsl_max; } static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width, int ch) { u32 tmp; void __iomem *zq_base, *dx_base; int zq, dx; int nr_dx; nr_dx = width / 8; writel(MPHY_PIR_ZCALBYP, phy_base + MPHY_PIR); /* * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation) * to avoid read error issue. */ writel(0x07d81e37, phy_base + MPHY_PGCR0); writel(0x0200c4e0, phy_base + MPHY_PGCR1); tmp = ddrphy_pgcr2[freq]; if (width >= 32) tmp |= MPHY_PGCR2_DUALCHN | MPHY_PGCR2_ACPDDC; writel(tmp, phy_base + MPHY_PGCR2); writel(ddrphy_ptr0[freq], phy_base + MPHY_PTR0); writel(ddrphy_ptr1[freq], phy_base + MPHY_PTR1); writel(0x00083def, phy_base + MPHY_PTR2); writel(ddrphy_ptr3[freq], phy_base + MPHY_PTR3); writel(ddrphy_ptr4[freq], phy_base + MPHY_PTR4); writel(ddrphy_acbdlr0[ch], phy_base + MPHY_ACBDLR0); writel(0x55555555, phy_base + MPHY_ACIOCR1); writel(0x00000000, phy_base + MPHY_ACIOCR2); writel(0x55555555, phy_base + MPHY_ACIOCR3); writel(0x00000000, phy_base + MPHY_ACIOCR4); writel(0x00000055, phy_base + MPHY_ACIOCR5); writel(0x00181aa4, phy_base + MPHY_DXCCR); writel(0x0024641e, phy_base + MPHY_DSGCR); writel(0x0000040b, phy_base + MPHY_DCR); writel(ddrphy_dtpr0[freq], phy_base + MPHY_DTPR0); writel(ddrphy_dtpr1[freq], phy_base + MPHY_DTPR1); writel(ddrphy_dtpr2[freq], phy_base + MPHY_DTPR2); writel(ddrphy_dtpr3[freq], phy_base + MPHY_DTPR3); writel(ddrphy_mr0[freq], phy_base + MPHY_MR0); writel(0x00000006, phy_base + MPHY_MR1); writel(ddrphy_mr2[freq], phy_base + MPHY_MR2); writel(0x00000000, phy_base + MPHY_MR3); tmp = 0; for (dx = 0; dx < nr_dx; dx++) tmp |= BIT(MPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx)); writel(0x90003087 | tmp, phy_base + MPHY_DTCR); writel(0x00000000, phy_base + MPHY_DTAR0); writel(0x00000008, phy_base + MPHY_DTAR1); writel(0x00000010, phy_base + MPHY_DTAR2); writel(0x00000018, phy_base + MPHY_DTAR3); writel(0xdd22ee11, phy_base + MPHY_DTDR0); writel(0x7788bb44, phy_base + MPHY_DTDR1); /* impedance control settings */ writel(0x04048900, phy_base + MPHY_ZQCR); zq_base = phy_base + MPHY_ZQ_BASE; for (zq = 0; zq < 4; zq++) { /* * board-dependent * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D */ writel(0x0007BB5D, zq_base + MPHY_ZQ_PR); zq_base += MPHY_ZQ_STRIDE; } /* DATX8 settings */ dx_base = phy_base + MPHY_DX_BASE; for (dx = 0; dx < 4; dx++) { tmp = readl(dx_base + MPHY_DX_GCR0); tmp &= ~MPHY_DX_GCR0_WLRKEN_MASK; tmp |= BIT(MPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) & MPHY_DX_GCR0_WLRKEN_MASK; writel(tmp, dx_base + MPHY_DX_GCR0); writel(0x00000000, dx_base + MPHY_DX_GCR1); writel(0x00000000, dx_base + MPHY_DX_GCR2); writel(0x00000000, dx_base + MPHY_DX_GCR3); dx_base += MPHY_DX_STRIDE; } while (!(readl(phy_base + MPHY_PGSR0) & MPHY_PGSR0_IDONE)) cpu_relax(); ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4); } struct ddrphy_init_sequence { char *description; u32 init_flag; u32 done_flag; u32 err_flag; }; static const struct ddrphy_init_sequence impedance_calibration_sequence[] = { { "Impedance Calibration", MPHY_PIR_ZCAL, MPHY_PGSR0_ZCDONE, MPHY_PGSR0_ZCERR, }, { /* sentinel */ } }; static const struct ddrphy_init_sequence dram_init_sequence[] = { { "DRAM Initialization", MPHY_PIR_DRAMRST | MPHY_PIR_DRAMINIT, MPHY_PGSR0_DIDONE, 0, }, { /* sentinel */ } }; static const struct ddrphy_init_sequence training_sequence[] = { { "Write Leveling", MPHY_PIR_WL, MPHY_PGSR0_WLDONE, MPHY_PGSR0_WLERR, }, { "Read DQS Gate Training", MPHY_PIR_QSGATE, MPHY_PGSR0_QSGDONE, MPHY_PGSR0_QSGERR, }, { "Write Leveling Adjustment", MPHY_PIR_WLADJ, MPHY_PGSR0_WLADONE, MPHY_PGSR0_WLAERR, }, { "Read Bit Deskew", MPHY_PIR_RDDSKW, MPHY_PGSR0_RDDONE, MPHY_PGSR0_RDERR, }, { "Write Bit Deskew", MPHY_PIR_WRDSKW, MPHY_PGSR0_WDDONE, MPHY_PGSR0_WDERR, }, { "Read Eye Training", MPHY_PIR_RDEYE, MPHY_PGSR0_REDONE, MPHY_PGSR0_REERR, }, { "Write Eye Training", MPHY_PIR_WREYE, MPHY_PGSR0_WEDONE, MPHY_PGSR0_WEERR, }, { /* sentinel */ } }; static int __ddrphy_training(void __iomem *phy_base, const struct ddrphy_init_sequence *seq) { const struct ddrphy_init_sequence *s; u32 pgsr0; u32 init_flag = MPHY_PIR_INIT; u32 done_flag = MPHY_PGSR0_IDONE; int timeout = 50000; /* 50 msec is long enough */ unsigned long start = 0; #ifdef DEBUG start = get_timer(0); #endif for (s = seq; s->description; s++) { init_flag |= s->init_flag; done_flag |= s->done_flag; } writel(init_flag, phy_base + MPHY_PIR); do { if (--timeout < 0) { pr_err("%s: error: timeout during DDR training\n", __func__); return -ETIMEDOUT; } udelay(1); pgsr0 = readl(phy_base + MPHY_PGSR0); } while ((pgsr0 & done_flag) != done_flag); for (s = seq; s->description; s++) { if (pgsr0 & s->err_flag) { pr_err("%s: error: %s failed\n", __func__, s->description); return -EIO; } } pr_debug("DDRPHY training: elapsed time %ld msec\n", get_timer(start)); return 0; } static int ddrphy_impedance_calibration(void __iomem *phy_base) { int ret; u32 tmp; ret = __ddrphy_training(phy_base, impedance_calibration_sequence); if (ret) return ret; /* * Because of a hardware bug, IDONE flag is set when the first ZQ block * is calibrated. The flag does not guarantee the completion for all * the ZQ blocks. Wait a little more just in case. */ udelay(1); /* reflect ZQ settings and enable average algorithm*/ tmp = readl(phy_base + MPHY_ZQCR); tmp |= MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE; writel(tmp, phy_base + MPHY_ZQCR); tmp &= ~MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE; tmp |= MPHY_ZQCR_AVGEN; writel(tmp, phy_base + MPHY_ZQCR); return 0; } static int ddrphy_dram_init(void __iomem *phy_base) { return __ddrphy_training(phy_base, dram_init_sequence); } static int ddrphy_training(void __iomem *phy_base) { return __ddrphy_training(phy_base, training_sequence); } /* UMC */ static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722}; /* * The ch2 is a different generation UMC core. * The register spec is different, unfortunately. */ static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44}; static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44}; static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = { {0x004A071D, 0x0078071D}, {0x0055081E, 0x0089081E}, }; static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B}; /* The ch2 is different for some reason only hardware guys know... */ static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022}; static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E}; static void umc_set_system_latency(void __iomem *dc_base, int phy_latency) { u32 val; int latency; val = readl(dc_base + UMC_RDATACTL_D0); latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT; latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >> UMC_RDATACTL_RAD2LTY_SHIFT; /* * UMC works at the half clock rate of the PHY. * The LSB of latency is ignored */ latency += phy_latency & ~1; val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK); if (latency > 0xf) { val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT; val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT; } else { val |= latency << UMC_RDATACTL_RADLTY_SHIFT; } writel(val, dc_base + UMC_RDATACTL_D0); writel(val, dc_base + UMC_RDATACTL_D1); readl(dc_base + UMC_RDATACTL_D1); /* relax */ } /* enable/disable auto refresh */ static void umc_refresh_ctrl(void __iomem *dc_base, int enable) { u32 tmp; tmp = readl(dc_base + UMC_SPCSETB); tmp &= ~UMC_SPCSETB_AREFMD_MASK; if (enable) tmp |= UMC_SPCSETB_AREFMD_ARB; else tmp |= UMC_SPCSETB_AREFMD_REG; writel(tmp, dc_base + UMC_SPCSETB); udelay(1); } static void umc_ud_init(void __iomem *umc_base, int ch) { writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0); if (ch == 2) writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0); } static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq, unsigned long size, int width, int ch) { enum dram_size size_e; int latency; u32 val; switch (size) { case 0: return 0; case SZ_256M: size_e = DRAM_SZ_256M; break; case SZ_512M: size_e = DRAM_SZ_512M; break; default: pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n", size, ch); return -EINVAL; } writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA); writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq], dc_base + UMC_CMDCTLB); writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA); writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB); val = 0x000e000e; latency = 12; /* ES2 inserted one more FF to the logic. */ if (uniphier_get_soc_model() >= 2) latency += 2; if (latency > 0xf) { val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT; val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT; } else { val |= latency << UMC_RDATACTL_RADLTY_SHIFT; } writel(val, dc_base + UMC_RDATACTL_D0); if (width >= 32) writel(val, dc_base + UMC_RDATACTL_D1); writel(0x04060A02, dc_base + UMC_WDATACTL_D0); if (width >= 32) writel(0x04060A02, dc_base + UMC_WDATACTL_D1); writel(0x04000000, dc_base + UMC_DATASET); writel(0x00400020, dc_base + UMC_DCCGCTL); writel(0x00000084, dc_base + UMC_FLOWCTLG); writel(0x00000000, dc_base + UMC_ACSSETA); writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq], dc_base + UMC_FLOWCTLA); writel(0x00004400, dc_base + UMC_FLOWCTLC); writel(0x200A0A00, dc_base + UMC_SPCSETB); writel(0x00000520, dc_base + UMC_DFICUPDCTLA); writel(0x0000000D, dc_base + UMC_RESPCTL); if (ch != 2) { writel(0x00202000, dc_base + UMC_FLOWCTLB); writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0); writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1); writel(0x00080700, dc_base + UMC_BSICMAPSET); } else { writel(0x00200000, dc_base + UMC_FLOWCTLB); writel(0x00000000, dc_base + UMC_BSICMAPSET); } writel(0x00000000, dc_base + UMC_ERRMASKA); writel(0x00000000, dc_base + UMC_ERRMASKB); return 0; } static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq, unsigned long size, unsigned int width, int ch) { void __iomem *dc_base = umc_ch_base + 0x00011000; void __iomem *phy_base = umc_ch_base + 0x00030000; int ret; writel(0x00000002, dc_base + UMC_INITSET); while (readl(dc_base + UMC_INITSTAT) & BIT(2)) cpu_relax(); /* deassert PHY reset signals */ writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST, dc_base + UMC_DIOCTLA); ddrphy_init(phy_base, freq, width, ch); ret = ddrphy_impedance_calibration(phy_base); if (ret) return ret; ddrphy_dram_init(phy_base); if (ret) return ret; ret = umc_dc_init(dc_base, freq, size, width, ch); if (ret) return ret; umc_ud_init(umc_ch_base, ch); ret = ddrphy_training(phy_base); if (ret) return ret; udelay(1); /* match the system latency between UMC and PHY */ umc_set_system_latency(dc_base, ddrphy_get_system_latency(phy_base, width)); udelay(1); /* stop auto refresh before clearing FIFO in PHY */ umc_refresh_ctrl(dc_base, 0); ddrphy_fifo_reset(phy_base); umc_refresh_ctrl(dc_base, 1); udelay(10); return 0; } static void um_init(void __iomem *um_base) { writel(0x000000ff, um_base + UMC_MBUS0); writel(0x000000ff, um_base + UMC_MBUS1); writel(0x000000ff, um_base + UMC_MBUS2); writel(0x000000ff, um_base + UMC_MBUS3); } int uniphier_pxs2_umc_init(const struct uniphier_board_data *bd) { void __iomem *um_base = (void __iomem *)0x5b600000; void __iomem *umc_ch_base = (void __iomem *)0x5b800000; enum dram_freq freq; int ch, ret; switch (bd->dram_freq) { case 1866: freq = DRAM_FREQ_1866M; break; case 2133: freq = DRAM_FREQ_2133M; break; default: pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq); return -EINVAL; } for (ch = 0; ch < DRAM_CH_NR; ch++) { unsigned long size = bd->dram_ch[ch].size; unsigned int width = bd->dram_ch[ch].width; if (size) { ret = umc_ch_init(umc_ch_base, freq, size / (width / 16), width, ch); if (ret) { pr_err("failed to initialize UMC ch%d\n", ch); return ret; } } umc_ch_base += 0x00200000; } um_init(um_base); return 0; }