/* * initcode.c - Initialize the processor. This is usually entails things * like external memory, voltage regulators, etc... Note that this file * cannot make any function calls as it may be executed all by itself by * the Blackfin's bootrom in LDR format. * * Copyright (c) 2004-2011 Analog Devices Inc. * * Licensed under the GPL-2 or later. */ #define BFIN_IN_INITCODE #include #include #include #include #include #include #include #include "serial.h" __attribute__((always_inline)) static inline void serial_init(void) { uint32_t uart_base = UART_DLL; #ifdef __ADSPBF54x__ # ifdef BFIN_BOOT_UART_USE_RTS # define BFIN_UART_USE_RTS 1 # else # define BFIN_UART_USE_RTS 0 # endif if (BFIN_UART_USE_RTS && CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) { size_t i; /* force RTS rather than relying on auto RTS */ bfin_write16(&pUART->mcr, bfin_read16(&pUART->mcr) | FCPOL); /* Wait for the line to clear up. We cannot rely on UART * registers as none of them reflect the status of the RSR. * Instead, we'll sleep for ~10 bit times at 9600 baud. * We can precalc things here by assuming boot values for * PLL rather than loading registers and calculating. * baud = SCLK / (16 ^ (1 - EDBO) * Divisor) * EDB0 = 0 * Divisor = (SCLK / baud) / 16 * SCLK = baud * 16 * Divisor * SCLK = (0x14 * CONFIG_CLKIN_HZ) / 5 * CCLK = (16 * Divisor * 5) * (9600 / 10) * In reality, this will probably be just about 1 second delay, * so assuming 9600 baud is OK (both as a very low and too high * speed as this will buffer things enough). */ #define _NUMBITS (10) /* how many bits to delay */ #define _LOWBAUD (9600) /* low baud rate */ #define _SCLK ((0x14 * CONFIG_CLKIN_HZ) / 5) /* SCLK based on PLL */ #define _DIVISOR ((_SCLK / _LOWBAUD) / 16) /* UART DLL/DLH */ #define _NUMINS (3) /* how many instructions in loop */ #define _CCLK (((16 * _DIVISOR * 5) * (_LOWBAUD / _NUMBITS)) / _NUMINS) i = _CCLK; while (i--) asm volatile("" : : : "memory"); } #endif if (BFIN_DEBUG_EARLY_SERIAL) { int ucen = bfin_read16(&pUART->gctl) & UCEN; serial_early_init(uart_base); /* If the UART is off, that means we need to program * the baud rate ourselves initially. */ if (ucen != UCEN) serial_early_set_baud(uart_base, CONFIG_BAUDRATE); } } __attribute__((always_inline)) static inline void serial_deinit(void) { #ifdef __ADSPBF54x__ uint32_t uart_base = UART_DLL; if (BFIN_UART_USE_RTS && CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) { /* clear forced RTS rather than relying on auto RTS */ bfin_write16(&pUART->mcr, bfin_read16(&pUART->mcr) & ~FCPOL); } #endif } __attribute__((always_inline)) static inline void serial_putc(char c) { uint32_t uart_base = UART_DLL; if (!BFIN_DEBUG_EARLY_SERIAL) return; if (c == '\n') serial_putc('\r'); bfin_write16(&pUART->thr, c); while (!(bfin_read16(&pUART->lsr) & TEMT)) continue; } #include "initcode.h" __attribute__((always_inline)) static inline void program_nmi_handler(void) { u32 tmp1, tmp2; /* Older bootroms don't create a dummy NMI handler, * so make one ourselves ASAP in case it fires. */ if (CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS && !ANOMALY_05000219) return; asm volatile ( "%0 = RETS;" /* Save current RETS */ "CALL 1f;" /* Figure out current PC */ "RTN;" /* The simple NMI handler */ "1:" "%1 = RETS;" /* Load addr of NMI handler */ "RETS = %0;" /* Restore RETS */ "[%2] = %1;" /* Write NMI handler */ : "=r"(tmp1), "=r"(tmp2) : "ab"(EVT2) ); } /* Max SCLK can be 133MHz ... dividing that by (2*4) gives * us a freq of 16MHz for SPI which should generally be * slow enough for the slow reads the bootrom uses. */ #if !defined(CONFIG_SPI_FLASH_SLOW_READ) && \ ((defined(__ADSPBF52x__) && __SILICON_REVISION__ >= 2) || \ (defined(__ADSPBF54x__) && __SILICON_REVISION__ >= 1)) # define BOOTROM_SUPPORTS_SPI_FAST_READ 1 #else # define BOOTROM_SUPPORTS_SPI_FAST_READ 0 #endif #ifndef CONFIG_SPI_BAUD_INITBLOCK # define CONFIG_SPI_BAUD_INITBLOCK (BOOTROM_SUPPORTS_SPI_FAST_READ ? 2 : 4) #endif #ifdef SPI0_BAUD # define bfin_write_SPI_BAUD bfin_write_SPI0_BAUD #endif /* PLL_DIV defines */ #ifndef CONFIG_PLL_DIV_VAL # if (CONFIG_CCLK_DIV == 1) # define CONFIG_CCLK_ACT_DIV CCLK_DIV1 # elif (CONFIG_CCLK_DIV == 2) # define CONFIG_CCLK_ACT_DIV CCLK_DIV2 # elif (CONFIG_CCLK_DIV == 4) # define CONFIG_CCLK_ACT_DIV CCLK_DIV4 # elif (CONFIG_CCLK_DIV == 8) # define CONFIG_CCLK_ACT_DIV CCLK_DIV8 # else # define CONFIG_CCLK_ACT_DIV CONFIG_CCLK_DIV_not_defined_properly # endif # define CONFIG_PLL_DIV_VAL (CONFIG_CCLK_ACT_DIV | CONFIG_SCLK_DIV) #endif #ifndef CONFIG_PLL_LOCKCNT_VAL # define CONFIG_PLL_LOCKCNT_VAL 0x0300 #endif #ifndef CONFIG_PLL_CTL_VAL # define CONFIG_PLL_CTL_VAL (SPORT_HYST | (CONFIG_VCO_MULT << 9) | CONFIG_CLKIN_HALF) #endif /* Make sure our voltage value is sane so we don't blow up! */ #ifndef CONFIG_VR_CTL_VAL # define BFIN_CCLK ((CONFIG_CLKIN_HZ * CONFIG_VCO_MULT) / CONFIG_CCLK_DIV) # if defined(__ADSPBF533__) || defined(__ADSPBF532__) || defined(__ADSPBF531__) # define CCLK_VLEV_120 400000000 # define CCLK_VLEV_125 533000000 # elif defined(__ADSPBF537__) || defined(__ADSPBF536__) || defined(__ADSPBF534__) # define CCLK_VLEV_120 401000000 # define CCLK_VLEV_125 401000000 # elif defined(__ADSPBF561__) # define CCLK_VLEV_120 300000000 # define CCLK_VLEV_125 501000000 # endif # if BFIN_CCLK < CCLK_VLEV_120 # define CONFIG_VR_CTL_VLEV VLEV_120 # elif BFIN_CCLK < CCLK_VLEV_125 # define CONFIG_VR_CTL_VLEV VLEV_125 # else # define CONFIG_VR_CTL_VLEV VLEV_130 # endif # if defined(__ADSPBF52x__) /* TBD; use default */ # undef CONFIG_VR_CTL_VLEV # define CONFIG_VR_CTL_VLEV VLEV_110 # elif defined(__ADSPBF54x__) /* TBD; use default */ # undef CONFIG_VR_CTL_VLEV # define CONFIG_VR_CTL_VLEV VLEV_120 # elif defined(__ADSPBF538__) || defined(__ADSPBF539__) /* TBD; use default */ # undef CONFIG_VR_CTL_VLEV # define CONFIG_VR_CTL_VLEV VLEV_125 # endif # ifdef CONFIG_BFIN_MAC # define CONFIG_VR_CTL_CLKBUF CLKBUFOE # else # define CONFIG_VR_CTL_CLKBUF 0 # endif # if defined(__ADSPBF52x__) # define CONFIG_VR_CTL_FREQ FREQ_1000 # else # define CONFIG_VR_CTL_FREQ (GAIN_20 | FREQ_1000) # endif # define CONFIG_VR_CTL_VAL (CONFIG_VR_CTL_CLKBUF | CONFIG_VR_CTL_VLEV | CONFIG_VR_CTL_FREQ) #endif /* some parts do not have an on-chip voltage regulator */ #if defined(__ADSPBF51x__) # define CONFIG_HAS_VR 0 # undef CONFIG_VR_CTL_VAL # define CONFIG_VR_CTL_VAL 0 #else # define CONFIG_HAS_VR 1 #endif #if CONFIG_MEM_SIZE #ifndef EBIU_RSTCTL /* Blackfin with SDRAM */ #ifndef CONFIG_EBIU_SDBCTL_VAL # if CONFIG_MEM_SIZE == 16 # define CONFIG_EBSZ_VAL EBSZ_16 # elif CONFIG_MEM_SIZE == 32 # define CONFIG_EBSZ_VAL EBSZ_32 # elif CONFIG_MEM_SIZE == 64 # define CONFIG_EBSZ_VAL EBSZ_64 # elif CONFIG_MEM_SIZE == 128 # define CONFIG_EBSZ_VAL EBSZ_128 # elif CONFIG_MEM_SIZE == 256 # define CONFIG_EBSZ_VAL EBSZ_256 # elif CONFIG_MEM_SIZE == 512 # define CONFIG_EBSZ_VAL EBSZ_512 # else # error You need to define CONFIG_EBIU_SDBCTL_VAL or CONFIG_MEM_SIZE # endif # if CONFIG_MEM_ADD_WDTH == 8 # define CONFIG_EBCAW_VAL EBCAW_8 # elif CONFIG_MEM_ADD_WDTH == 9 # define CONFIG_EBCAW_VAL EBCAW_9 # elif CONFIG_MEM_ADD_WDTH == 10 # define CONFIG_EBCAW_VAL EBCAW_10 # elif CONFIG_MEM_ADD_WDTH == 11 # define CONFIG_EBCAW_VAL EBCAW_11 # else # error You need to define CONFIG_EBIU_SDBCTL_VAL or CONFIG_MEM_ADD_WDTH # endif # define CONFIG_EBIU_SDBCTL_VAL (CONFIG_EBCAW_VAL | CONFIG_EBSZ_VAL | EBE) #endif #endif #endif /* Conflicting Column Address Widths Causes SDRAM Errors: * EB2CAW and EB3CAW must be the same */ #if ANOMALY_05000362 # if ((CONFIG_EBIU_SDBCTL_VAL & 0x30000000) >> 8) != (CONFIG_EBIU_SDBCTL_VAL & 0x00300000) # error "Anomaly 05000362: EB2CAW and EB3CAW must be the same" # endif #endif __attribute__((always_inline)) static inline void program_early_devices(ADI_BOOT_DATA *bs, uint *sdivB, uint *divB, uint *vcoB) { serial_putc('a'); /* Save the clock pieces that are used in baud rate calculation */ if (BFIN_DEBUG_EARLY_SERIAL || CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) { serial_putc('b'); *sdivB = bfin_read_PLL_DIV() & 0xf; *vcoB = (bfin_read_PLL_CTL() >> 9) & 0x3f; *divB = serial_early_get_div(); serial_putc('c'); } serial_putc('d'); #ifdef CONFIG_HW_WATCHDOG # ifndef CONFIG_HW_WATCHDOG_TIMEOUT_INITCODE # define CONFIG_HW_WATCHDOG_TIMEOUT_INITCODE 20000 # endif /* Program the watchdog with an initial timeout of ~20 seconds. * Hopefully that should be long enough to load the u-boot LDR * (from wherever) and then the common u-boot code can take over. * In bypass mode, the start.S would have already set a much lower * timeout, so don't clobber that. */ if (CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS) { serial_putc('e'); bfin_write_WDOG_CNT(MSEC_TO_SCLK(CONFIG_HW_WATCHDOG_TIMEOUT_INITCODE)); bfin_write_WDOG_CTL(0); serial_putc('f'); } #endif serial_putc('g'); /* Blackfin bootroms use the SPI slow read opcode instead of the SPI * fast read, so we need to slow down the SPI clock a lot more during * boot. Once we switch over to u-boot's SPI flash driver, we'll * increase the speed appropriately. */ if (CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_SPI_MASTER) { serial_putc('h'); if (BOOTROM_SUPPORTS_SPI_FAST_READ && CONFIG_SPI_BAUD_INITBLOCK < 4) bs->dFlags |= BFLAG_FASTREAD; bfin_write_SPI_BAUD(CONFIG_SPI_BAUD_INITBLOCK); serial_putc('i'); } serial_putc('j'); } __attribute__((always_inline)) static inline bool maybe_self_refresh(ADI_BOOT_DATA *bs) { serial_putc('a'); if (!CONFIG_MEM_SIZE) return false; /* If external memory is enabled, put it into self refresh first. */ #if defined(EBIU_RSTCTL) if (bfin_read_EBIU_RSTCTL() & DDR_SRESET) { serial_putc('b'); bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() | SRREQ); return true; } #elif defined(EBIU_SDGCTL) if (bfin_read_EBIU_SDBCTL() & EBE) { serial_putc('b'); bfin_write_EBIU_SDGCTL(bfin_read_EBIU_SDGCTL() | SRFS); return true; } #endif serial_putc('c'); return false; } __attribute__((always_inline)) static inline u16 program_clocks(ADI_BOOT_DATA *bs, bool put_into_srfs) { u16 vr_ctl; serial_putc('a'); vr_ctl = bfin_read_VR_CTL(); serial_putc('b'); /* If we're entering self refresh, make sure it has happened. */ if (put_into_srfs) #if defined(EBIU_RSTCTL) while (!(bfin_read_EBIU_RSTCTL() & SRACK)) continue; #elif defined(EBIU_SDGCTL) while (!(bfin_read_EBIU_SDSTAT() & SDSRA)) continue; #else ; #endif serial_putc('c'); /* With newer bootroms, we use the helper function to set up * the memory controller. Older bootroms lacks such helpers * so we do it ourselves. */ if (!ANOMALY_05000386) { serial_putc('d'); /* Always programming PLL_LOCKCNT avoids Anomaly 05000430 */ ADI_SYSCTRL_VALUES memory_settings; uint32_t actions = SYSCTRL_WRITE | SYSCTRL_PLLCTL | SYSCTRL_LOCKCNT; if (!ANOMALY_05000440) actions |= SYSCTRL_PLLDIV; if (CONFIG_HAS_VR) { actions |= SYSCTRL_VRCTL; if (CONFIG_VR_CTL_VAL & FREQ_MASK) actions |= SYSCTRL_INTVOLTAGE; else actions |= SYSCTRL_EXTVOLTAGE; memory_settings.uwVrCtl = CONFIG_VR_CTL_VAL; } else actions |= SYSCTRL_EXTVOLTAGE; memory_settings.uwPllCtl = CONFIG_PLL_CTL_VAL; memory_settings.uwPllDiv = CONFIG_PLL_DIV_VAL; memory_settings.uwPllLockCnt = CONFIG_PLL_LOCKCNT_VAL; #if ANOMALY_05000432 bfin_write_SIC_IWR1(0); #endif serial_putc('e'); bfrom_SysControl(actions, &memory_settings, NULL); serial_putc('f'); if (ANOMALY_05000440) bfin_write_PLL_DIV(CONFIG_PLL_DIV_VAL); #if ANOMALY_05000432 bfin_write_SIC_IWR1(-1); #endif #if ANOMALY_05000171 bfin_write_SICA_IWR0(-1); bfin_write_SICA_IWR1(-1); #endif serial_putc('g'); } else { serial_putc('h'); /* Disable all peripheral wakeups except for the PLL event. */ #ifdef SIC_IWR0 bfin_write_SIC_IWR0(1); bfin_write_SIC_IWR1(0); # ifdef SIC_IWR2 bfin_write_SIC_IWR2(0); # endif #elif defined(SICA_IWR0) bfin_write_SICA_IWR0(1); bfin_write_SICA_IWR1(0); #else bfin_write_SIC_IWR(1); #endif serial_putc('i'); /* Always programming PLL_LOCKCNT avoids Anomaly 05000430 */ bfin_write_PLL_LOCKCNT(CONFIG_PLL_LOCKCNT_VAL); serial_putc('j'); /* Only reprogram when needed to avoid triggering unnecessary * PLL relock sequences. */ if (vr_ctl != CONFIG_VR_CTL_VAL) { serial_putc('?'); bfin_write_VR_CTL(CONFIG_VR_CTL_VAL); asm("idle;"); serial_putc('!'); } serial_putc('k'); bfin_write_PLL_DIV(CONFIG_PLL_DIV_VAL); serial_putc('l'); /* Only reprogram when needed to avoid triggering unnecessary * PLL relock sequences. */ if (ANOMALY_05000242 || bfin_read_PLL_CTL() != CONFIG_PLL_CTL_VAL) { serial_putc('?'); bfin_write_PLL_CTL(CONFIG_PLL_CTL_VAL); asm("idle;"); serial_putc('!'); } serial_putc('m'); /* Restore all peripheral wakeups. */ #ifdef SIC_IWR0 bfin_write_SIC_IWR0(-1); bfin_write_SIC_IWR1(-1); # ifdef SIC_IWR2 bfin_write_SIC_IWR2(-1); # endif #elif defined(SICA_IWR0) bfin_write_SICA_IWR0(-1); bfin_write_SICA_IWR1(-1); #else bfin_write_SIC_IWR(-1); #endif serial_putc('n'); } serial_putc('o'); return vr_ctl; } __attribute__((always_inline)) static inline void update_serial_clocks(ADI_BOOT_DATA *bs, uint sdivB, uint divB, uint vcoB) { serial_putc('a'); /* Since we've changed the SCLK above, we may need to update * the UART divisors (UART baud rates are based on SCLK). * Do the division by hand as there are no native instructions * for dividing which means we'd generate a libgcc reference. */ if (CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) { serial_putc('b'); unsigned int sdivR, vcoR; sdivR = bfin_read_PLL_DIV() & 0xf; vcoR = (bfin_read_PLL_CTL() >> 9) & 0x3f; int dividend = sdivB * divB * vcoR; int divisor = vcoB * sdivR; unsigned int quotient; for (quotient = 0; dividend > 0; ++quotient) dividend -= divisor; serial_early_put_div(UART_DLL, quotient - ANOMALY_05000230); serial_putc('c'); } serial_putc('d'); } __attribute__((always_inline)) static inline void program_memory_controller(ADI_BOOT_DATA *bs, bool put_into_srfs) { serial_putc('a'); if (!CONFIG_MEM_SIZE) return; serial_putc('b'); /* Program the external memory controller before we come out of * self-refresh. This only works with our SDRAM controller. */ #ifdef EBIU_SDGCTL # ifdef CONFIG_EBIU_SDRRC_VAL bfin_write_EBIU_SDRRC(CONFIG_EBIU_SDRRC_VAL); # endif # ifdef CONFIG_EBIU_SDBCTL_VAL bfin_write_EBIU_SDBCTL(CONFIG_EBIU_SDBCTL_VAL); # endif # ifdef CONFIG_EBIU_SDGCTL_VAL bfin_write_EBIU_SDGCTL(CONFIG_EBIU_SDGCTL_VAL); # endif #endif serial_putc('c'); /* Now that we've reprogrammed, take things out of self refresh. */ if (put_into_srfs) #if defined(EBIU_RSTCTL) bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() & ~(SRREQ)); #elif defined(EBIU_SDGCTL) bfin_write_EBIU_SDGCTL(bfin_read_EBIU_SDGCTL() & ~(SRFS)); #endif serial_putc('d'); /* Our DDR controller sucks and cannot be programmed while in * self-refresh. So we have to pull it out before programming. */ #ifdef EBIU_RSTCTL # ifdef CONFIG_EBIU_RSTCTL_VAL bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() | 0x1 /*DDRSRESET*/ | CONFIG_EBIU_RSTCTL_VAL); # endif # ifdef CONFIG_EBIU_DDRCTL0_VAL bfin_write_EBIU_DDRCTL0(CONFIG_EBIU_DDRCTL0_VAL); # endif # ifdef CONFIG_EBIU_DDRCTL1_VAL bfin_write_EBIU_DDRCTL1(CONFIG_EBIU_DDRCTL1_VAL); # endif # ifdef CONFIG_EBIU_DDRCTL2_VAL bfin_write_EBIU_DDRCTL2(CONFIG_EBIU_DDRCTL2_VAL); # endif # ifdef CONFIG_EBIU_DDRCTL3_VAL /* default is disable, so don't need to force this */ bfin_write_EBIU_DDRCTL3(CONFIG_EBIU_DDRCTL3_VAL); # endif # ifdef CONFIG_EBIU_DDRQUE_VAL bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE() | CONFIG_EBIU_DDRQUE_VAL); # endif #endif serial_putc('e'); } __attribute__((always_inline)) static inline void check_hibernation(ADI_BOOT_DATA *bs, u16 vr_ctl, bool put_into_srfs) { serial_putc('a'); if (!CONFIG_MEM_SIZE) return; serial_putc('b'); /* Are we coming out of hibernate (suspend to memory) ? * The memory layout is: * 0x0: hibernate magic for anomaly 307 (0xDEADBEEF) * 0x4: return address * 0x8: stack pointer * * SCKELOW is unreliable on older parts (anomaly 307) */ if (ANOMALY_05000307 || vr_ctl & 0x8000) { uint32_t *hibernate_magic = 0; __builtin_bfin_ssync(); /* make sure memory controller is done */ if (hibernate_magic[0] == 0xDEADBEEF) { serial_putc('c'); bfin_write_EVT15(hibernate_magic[1]); bfin_write_IMASK(EVT_IVG15); __asm__ __volatile__ ( /* load reti early to avoid anomaly 281 */ "reti = %0;" /* clear hibernate magic */ "[%0] = %1;" /* load stack pointer */ "SP = [%0 + 8];" /* lower ourselves from reset ivg to ivg15 */ "raise 15;" "rti;" : : "p"(hibernate_magic), "d"(0x2000 /* jump.s 0 */) ); } serial_putc('d'); } serial_putc('e'); } BOOTROM_CALLED_FUNC_ATTR void initcode(ADI_BOOT_DATA *bs) { ADI_BOOT_DATA bootstruct_scratch; /* Setup NMI handler before anything else */ program_nmi_handler(); serial_init(); serial_putc('A'); /* If the bootstruct is NULL, then it's because we're loading * dynamically and not via LDR (bootrom). So set the struct to * some scratch space. */ if (!bs) bs = &bootstruct_scratch; serial_putc('B'); bool put_into_srfs = maybe_self_refresh(bs); serial_putc('C'); uint sdivB, divB, vcoB; program_early_devices(bs, &sdivB, &divB, &vcoB); serial_putc('D'); u16 vr_ctl = program_clocks(bs, put_into_srfs); serial_putc('E'); update_serial_clocks(bs, sdivB, divB, vcoB); serial_putc('F'); program_memory_controller(bs, put_into_srfs); serial_putc('G'); check_hibernation(bs, vr_ctl, put_into_srfs); serial_putc('H'); program_async_controller(bs); #ifdef CONFIG_BFIN_BOOTROM_USES_EVT1 serial_putc('I'); /* Tell the bootrom where our entry point is so that it knows * where to jump to when finishing processing the LDR. This * allows us to avoid small jump blocks in the LDR, and also * works around anomaly 05000389 (init address in external * memory causes bootrom to trigger external addressing IVHW). */ if (CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS) bfin_write_EVT1(CONFIG_SYS_MONITOR_BASE); #endif serial_putc('>'); serial_putc('\n'); serial_deinit(); }