/* * Copyright 2008-2011 Freescale Semiconductor, Inc. * * (C) Copyright 2000 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <linux/compiler.h> #include <asm/fsl_law.h> #include <asm/io.h> #include <linux/log2.h> DECLARE_GLOBAL_DATA_PTR; #define FSL_HW_NUM_LAWS CONFIG_SYS_FSL_NUM_LAWS #ifdef CONFIG_FSL_CORENET #define LAW_BASE (CONFIG_SYS_FSL_CORENET_CCM_ADDR) #define LAWAR_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawar) #define LAWBARH_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawbarh) #define LAWBARL_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawbarl) #define LAWBAR_SHIFT 0 #else #define LAW_BASE (CONFIG_SYS_IMMR + 0xc08) #define LAWAR_ADDR(x) ((u32 *)LAW_BASE + 8 * x + 2) #define LAWBAR_ADDR(x) ((u32 *)LAW_BASE + 8 * x) #define LAWBAR_SHIFT 12 #endif static inline phys_addr_t get_law_base_addr(int idx) { #ifdef CONFIG_FSL_CORENET return (phys_addr_t) ((u64)in_be32(LAWBARH_ADDR(idx)) << 32) | in_be32(LAWBARL_ADDR(idx)); #else return (phys_addr_t)in_be32(LAWBAR_ADDR(idx)) << LAWBAR_SHIFT; #endif } static inline void set_law_base_addr(int idx, phys_addr_t addr) { #ifdef CONFIG_FSL_CORENET out_be32(LAWBARL_ADDR(idx), addr & 0xffffffff); out_be32(LAWBARH_ADDR(idx), (u64)addr >> 32); #else out_be32(LAWBAR_ADDR(idx), addr >> LAWBAR_SHIFT); #endif } void set_law(u8 idx, phys_addr_t addr, enum law_size sz, enum law_trgt_if id) { gd->arch.used_laws |= (1 << idx); out_be32(LAWAR_ADDR(idx), 0); set_law_base_addr(idx, addr); out_be32(LAWAR_ADDR(idx), LAW_EN | ((u32)id << 20) | (u32)sz); /* Read back so that we sync the writes */ in_be32(LAWAR_ADDR(idx)); } void disable_law(u8 idx) { gd->arch.used_laws &= ~(1 << idx); out_be32(LAWAR_ADDR(idx), 0); set_law_base_addr(idx, 0); /* Read back so that we sync the writes */ in_be32(LAWAR_ADDR(idx)); return; } #if !defined(CONFIG_NAND_SPL) && \ (!defined(CONFIG_SPL_BUILD) || !defined(CONFIG_SPL_INIT_MINIMAL)) static int get_law_entry(u8 i, struct law_entry *e) { u32 lawar; lawar = in_be32(LAWAR_ADDR(i)); if (!(lawar & LAW_EN)) return 0; e->addr = get_law_base_addr(i); e->size = lawar & 0x3f; e->trgt_id = (lawar >> 20) & 0xff; return 1; } #endif int set_next_law(phys_addr_t addr, enum law_size sz, enum law_trgt_if id) { u32 idx = ffz(gd->arch.used_laws); if (idx >= FSL_HW_NUM_LAWS) return -1; set_law(idx, addr, sz, id); return idx; } #if !defined(CONFIG_NAND_SPL) && \ (!defined(CONFIG_SPL_BUILD) || !defined(CONFIG_SPL_INIT_MINIMAL)) int set_last_law(phys_addr_t addr, enum law_size sz, enum law_trgt_if id) { u32 idx; /* we have no LAWs free */ if (gd->arch.used_laws == -1) return -1; /* grab the last free law */ idx = __ilog2(~(gd->arch.used_laws)); if (idx >= FSL_HW_NUM_LAWS) return -1; set_law(idx, addr, sz, id); return idx; } struct law_entry find_law(phys_addr_t addr) { struct law_entry entry; int i; entry.index = -1; entry.addr = 0; entry.size = 0; entry.trgt_id = 0; for (i = 0; i < FSL_HW_NUM_LAWS; i++) { u64 upper; if (!get_law_entry(i, &entry)) continue; upper = entry.addr + (2ull << entry.size); if ((addr >= entry.addr) && (addr < upper)) { entry.index = i; break; } } return entry; } void print_laws(void) { int i; u32 lawar; printf("\nLocal Access Window Configuration\n"); for (i = 0; i < FSL_HW_NUM_LAWS; i++) { lawar = in_be32(LAWAR_ADDR(i)); #ifdef CONFIG_FSL_CORENET printf("LAWBARH%02d: 0x%08x LAWBARL%02d: 0x%08x", i, in_be32(LAWBARH_ADDR(i)), i, in_be32(LAWBARL_ADDR(i))); #else printf("LAWBAR%02d: 0x%08x", i, in_be32(LAWBAR_ADDR(i))); #endif printf(" LAWAR%02d: 0x%08x\n", i, lawar); printf("\t(EN: %d TGT: 0x%02x SIZE: ", (lawar & LAW_EN) ? 1 : 0, (lawar >> 20) & 0xff); print_size(lawar_size(lawar), ")\n"); } return; } /* use up to 2 LAWs for DDR, used the last available LAWs */ int set_ddr_laws(u64 start, u64 sz, enum law_trgt_if id) { u64 start_align, law_sz; int law_sz_enc; if (start == 0) start_align = 1ull << (LAW_SIZE_32G + 1); else start_align = 1ull << (__ffs64(start)); law_sz = min(start_align, sz); law_sz_enc = __ilog2_u64(law_sz) - 1; if (set_last_law(start, law_sz_enc, id) < 0) return -1; /* recalculate size based on what was actually covered by the law */ law_sz = 1ull << __ilog2_u64(law_sz); /* do we still have anything to map */ sz = sz - law_sz; if (sz) { start += law_sz; start_align = 1ull << (__ffs64(start)); law_sz = min(start_align, sz); law_sz_enc = __ilog2_u64(law_sz) - 1; if (set_last_law(start, law_sz_enc, id) < 0) return -1; } else { return 0; } /* do we still have anything to map */ sz = sz - law_sz; if (sz) return 1; return 0; } #endif /* not SPL */ void disable_non_ddr_laws(void) { int i; int id; for (i = 0; i < FSL_HW_NUM_LAWS; i++) { u32 lawar = in_be32(LAWAR_ADDR(i)); if (lawar & LAW_EN) { id = (lawar & ~LAW_EN) >> 20; switch (id) { case LAW_TRGT_IF_DDR_1: case LAW_TRGT_IF_DDR_2: case LAW_TRGT_IF_DDR_3: case LAW_TRGT_IF_DDR_4: case LAW_TRGT_IF_DDR_INTRLV: case LAW_TRGT_IF_DDR_INTLV_34: case LAW_TRGT_IF_DDR_INTLV_123: case LAW_TRGT_IF_DDR_INTLV_1234: continue; default: disable_law(i); } } } } void init_laws(void) { int i; #if FSL_HW_NUM_LAWS < 32 gd->arch.used_laws = ~((1 << FSL_HW_NUM_LAWS) - 1); #elif FSL_HW_NUM_LAWS == 32 gd->arch.used_laws = 0; #else #error FSL_HW_NUM_LAWS can not be greater than 32 w/o code changes #endif #if defined(CONFIG_SECURE_BOOT) && defined(CONFIG_E500) && \ !defined(CONFIG_E500MC) /* ISBC (Boot ROM) creates a LAW 0 entry for non PBL platforms, * which is not disabled before transferring the control to uboot. * Disable the LAW 0 entry here. */ disable_law(0); #endif #if !defined(CONFIG_SECURE_BOOT) /* * if any non DDR LAWs has been created earlier, remove them before * LAW table is parsed. */ disable_non_ddr_laws(); #endif /* * Any LAWs that were set up before we booted assume they are meant to * be around and mark them used. */ for (i = 0; i < FSL_HW_NUM_LAWS; i++) { u32 lawar = in_be32(LAWAR_ADDR(i)); if (lawar & LAW_EN) gd->arch.used_laws |= (1 << i); } for (i = 0; i < num_law_entries; i++) { if (law_table[i].index == -1) set_next_law(law_table[i].addr, law_table[i].size, law_table[i].trgt_id); else set_law(law_table[i].index, law_table[i].addr, law_table[i].size, law_table[i].trgt_id); } #ifdef CONFIG_SRIO_PCIE_BOOT_SLAVE /* check RCW to get which port is used for boot */ ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR; u32 bootloc = in_be32(&gur->rcwsr[6]); /* * in SRIO or PCIE boot we need to set specail LAWs for * SRIO or PCIE interfaces. */ switch ((bootloc & FSL_CORENET_RCWSR6_BOOT_LOC) >> 23) { case 0x0: /* boot from PCIE1 */ set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS, LAW_SIZE_1M, LAW_TRGT_IF_PCIE_1); set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS, LAW_SIZE_1M, LAW_TRGT_IF_PCIE_1); break; case 0x1: /* boot from PCIE2 */ set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS, LAW_SIZE_1M, LAW_TRGT_IF_PCIE_2); set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS, LAW_SIZE_1M, LAW_TRGT_IF_PCIE_2); break; case 0x2: /* boot from PCIE3 */ set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS, LAW_SIZE_1M, LAW_TRGT_IF_PCIE_3); set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS, LAW_SIZE_1M, LAW_TRGT_IF_PCIE_3); break; case 0x8: /* boot from SRIO1 */ set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS, LAW_SIZE_1M, LAW_TRGT_IF_RIO_1); set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS, LAW_SIZE_1M, LAW_TRGT_IF_RIO_1); break; case 0x9: /* boot from SRIO2 */ set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS, LAW_SIZE_1M, LAW_TRGT_IF_RIO_2); set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS, LAW_SIZE_1M, LAW_TRGT_IF_RIO_2); break; default: break; } #endif return ; }