/* * arch/powerpc/cpu/ppc4xx/4xx_ibm_ddr2_autocalib.c * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a * DDR2 controller (non Denali Core). Those currently are: * * 405: 405EX * 440/460: 440SP/440SPe/460EX/460GT/460SX * * (C) Copyright 2008 Applied Micro Circuits Corporation * Adam Graham * * (C) Copyright 2007-2008 * Stefan Roese, DENX Software Engineering, sr@denx.de. * * COPYRIGHT AMCC CORPORATION 2004 * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * */ /* define DEBUG for debugging output (obviously ;-)) */ #undef DEBUG #include #include #include #include #include "ecc.h" #if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) /* * Only compile the DDR auto-calibration code for NOR boot and * not for NAND boot (NAND SPL and NAND U-Boot - NUB) */ #if !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL) #define MAXBXCF 4 #define SDRAM_RXBAS_SHIFT_1M 20 #if defined(CONFIG_SYS_DECREMENT_PATTERNS) #define NUMMEMTESTS 24 #else #define NUMMEMTESTS 8 #endif /* CONFIG_SYS_DECREMENT_PATTERNS */ #define NUMLOOPS 1 /* configure as you deem approporiate */ #define NUMMEMWORDS 16 #define SDRAM_RDCC_RDSS_VAL(n) SDRAM_RDCC_RDSS_DECODE(ddr_rdss_opt(n)) /* Private Structure Definitions */ struct autocal_regs { u32 rffd; u32 rqfd; }; struct ddrautocal { u32 rffd; u32 rffd_min; u32 rffd_max; u32 rffd_size; u32 rqfd; u32 rqfd_size; u32 rdcc; u32 flags; }; struct sdram_timing_clks { u32 wrdtr; u32 clktr; u32 rdcc; u32 flags; }; struct autocal_clks { struct sdram_timing_clks clocks; struct ddrautocal autocal; }; /*--------------------------------------------------------------------------+ * Prototypes *--------------------------------------------------------------------------*/ #if defined(CONFIG_PPC4xx_DDR_METHOD_A) static u32 DQS_calibration_methodA(struct ddrautocal *); static u32 program_DQS_calibration_methodA(struct ddrautocal *); #else static u32 DQS_calibration_methodB(struct ddrautocal *); static u32 program_DQS_calibration_methodB(struct ddrautocal *); #endif static int short_mem_test(u32 *); /* * To provide an interface for board specific config values in this common * DDR setup code, we implement he "weak" default functions here. They return * the default value back to the caller. * * Please see include/configs/yucca.h for an example fora board specific * implementation. */ #if !defined(CONFIG_SPD_EEPROM) u32 __ddr_wrdtr(u32 default_val) { return default_val; } u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr"))); u32 __ddr_clktr(u32 default_val) { return default_val; } u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr"))); /* * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed */ void __spd_ddr_init_hang(void) { hang(); } void spd_ddr_init_hang(void) __attribute__((weak, alias("__spd_ddr_init_hang"))); #endif /* defined(CONFIG_SPD_EEPROM) */ struct sdram_timing *__ddr_scan_option(struct sdram_timing *default_val) { return default_val; } struct sdram_timing *ddr_scan_option(struct sdram_timing *) __attribute__((weak, alias("__ddr_scan_option"))); u32 __ddr_rdss_opt(u32 default_val) { return default_val; } u32 ddr_rdss_opt(ulong) __attribute__((weak, alias("__ddr_rdss_opt"))); static u32 *get_membase(int bxcr_num) { ulong bxcf; u32 *membase; #if defined(SDRAM_R0BAS) /* BAS from Memory Queue rank reg. */ membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num))); bxcf = 0; /* just to satisfy the compiler */ #else /* BAS from SDRAM_MBxCF mem rank reg. */ mfsdram(SDRAM_MB0CF + (bxcr_num<<2), bxcf); membase = (u32 *)((bxcf & 0xfff80000) << 3); #endif return membase; } static inline void ecc_clear_status_reg(void) { mtsdram(SDRAM_ECCES, 0xffffffff); #if defined(SDRAM_R0BAS) mtdcr(SDRAM_ERRSTATLL, 0xffffffff); #endif } /* * Reset and relock memory DLL after SDRAM_CLKTR change */ static inline void relock_memory_DLL(void) { u32 reg; mtsdram(SDRAM_MCOPT2, SDRAM_MCOPT2_IPTR_EXECUTE); do { mfsdram(SDRAM_MCSTAT, reg); } while (!(reg & SDRAM_MCSTAT_MIC_COMP)); mfsdram(SDRAM_MCOPT2, reg); mtsdram(SDRAM_MCOPT2, reg | SDRAM_MCOPT2_DCEN_ENABLE); } static int ecc_check_status_reg(void) { u32 ecc_status; /* * Compare suceeded, now check * if got ecc error. If got an * ecc error, then don't count * this as a passing value */ mfsdram(SDRAM_ECCES, ecc_status); if (ecc_status != 0x00000000) { /* clear on error */ ecc_clear_status_reg(); /* ecc check failure */ return 0; } ecc_clear_status_reg(); sync(); return 1; } /* return 1 if passes, 0 if fail */ static int short_mem_test(u32 *base_address) { int i, j, l; u32 ecc_mode = 0; ulong test[NUMMEMTESTS][NUMMEMWORDS] = { /* 0 */ {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, /* 1 */ {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, /* 2 */ {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, /* 3 */ {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, /* 4 */ {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, /* 5 */ {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, /* 6 */ {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, /* 7 */ {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55}, #if defined(CONFIG_SYS_DECREMENT_PATTERNS) /* 8 */ {0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff}, /* 9 */ {0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe}, /* 10 */{0xfffdfffd, 0xfffdfffd, 0xfffdffff, 0xfffdfffd, 0xfffdfffd, 0xfffdfffd, 0xfffdffff, 0xfffdfffd, 0xfffdfffd, 0xfffdfffd, 0xfffdffff, 0xfffdfffd, 0xfffdfffd, 0xfffdfffd, 0xfffdffff, 0xfffdfffd}, /* 11 */{0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc}, /* 12 */{0xfffbfffb, 0xfffffffb, 0xfffffffb, 0xfffffffb, 0xfffbfffb, 0xfffffffb, 0xfffffffb, 0xfffffffb, 0xfffbfffb, 0xfffffffb, 0xfffffffb, 0xfffffffb, 0xfffbfffb, 0xfffffffb, 0xfffffffb, 0xfffffffb}, /* 13 */{0xfffafffa, 0xfffafffa, 0xfffffffa, 0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa}, /* 14 */{0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9}, /* 15 */{0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8}, /* 16 */{0xfff7fff7, 0xfff7ffff, 0xfff7fff7, 0xfff7fff7, 0xfff7fff7, 0xfff7ffff, 0xfff7fff7, 0xfff7fff7, 0xfff7fff7, 0xfff7ffff, 0xfff7fff7, 0xfff7fff7, 0xfff7ffff, 0xfff7ffff, 0xfff7fff7, 0xfff7fff7}, /* 17 */{0xfff6fff5, 0xfff6ffff, 0xfff6fff6, 0xfff6fff7, 0xfff6fff5, 0xfff6ffff, 0xfff6fff6, 0xfff6fff7, 0xfff6fff5, 0xfff6ffff, 0xfff6fff6, 0xfff6fff7, 0xfff6fff5, 0xfff6ffff, 0xfff6fff6, 0xfff6fff7}, /* 18 */{0xfff5fff4, 0xfff5ffff, 0xfff5fff5, 0xfff5fff5, 0xfff5fff4, 0xfff5ffff, 0xfff5fff5, 0xfff5fff5, 0xfff5fff4, 0xfff5ffff, 0xfff5fff5, 0xfff5fff5, 0xfff5fff4, 0xfff5ffff, 0xfff5fff5, 0xfff5fff5}, /* 19 */{0xfff4fff3, 0xfff4ffff, 0xfff4fff4, 0xfff4fff4, 0xfff4fff3, 0xfff4ffff, 0xfff4fff4, 0xfff4fff4, 0xfff4fff3, 0xfff4ffff, 0xfff4fff4, 0xfff4fff4, 0xfff4fff3, 0xfff4ffff, 0xfff4fff4, 0xfff4fff4}, /* 20 */{0xfff3fff2, 0xfff3ffff, 0xfff3fff3, 0xfff3fff3, 0xfff3fff2, 0xfff3ffff, 0xfff3fff3, 0xfff3fff3, 0xfff3fff2, 0xfff3ffff, 0xfff3fff3, 0xfff3fff3, 0xfff3fff2, 0xfff3ffff, 0xfff3fff3, 0xfff3fff3}, /* 21 */{0xfff2ffff, 0xfff2ffff, 0xfff2fff2, 0xfff2fff2, 0xfff2ffff, 0xfff2ffff, 0xfff2fff2, 0xfff2fff2, 0xfff2ffff, 0xfff2ffff, 0xfff2fff2, 0xfff2fff2, 0xfff2ffff, 0xfff2ffff, 0xfff2fff2, 0xfff2fff2}, /* 22 */{0xfff1ffff, 0xfff1ffff, 0xfff1fff1, 0xfff1fff1, 0xfff1ffff, 0xfff1ffff, 0xfff1fff1, 0xfff1fff1, 0xfff1ffff, 0xfff1ffff, 0xfff1fff1, 0xfff1fff1, 0xfff1ffff, 0xfff1ffff, 0xfff1fff1, 0xfff1fff1}, /* 23 */{0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fffe, 0xfff0fff0, 0xfff0fff0}, #endif /* CONFIG_SYS_DECREMENT_PATTERNS */ }; mfsdram(SDRAM_MCOPT1, ecc_mode); if ((ecc_mode & SDRAM_MCOPT1_MCHK_CHK_REP) == SDRAM_MCOPT1_MCHK_CHK_REP) { ecc_clear_status_reg(); sync(); ecc_mode = 1; } else { ecc_mode = 0; } /* * Run the short memory test. */ for (i = 0; i < NUMMEMTESTS; i++) { for (j = 0; j < NUMMEMWORDS; j++) { base_address[j] = test[i][j]; ppcDcbf((ulong)&(base_address[j])); } sync(); iobarrier_rw(); for (l = 0; l < NUMLOOPS; l++) { for (j = 0; j < NUMMEMWORDS; j++) { if (base_address[j] != test[i][j]) { ppcDcbf((u32)&(base_address[j])); return 0; } else { if (ecc_mode) { if (!ecc_check_status_reg()) return 0; } } ppcDcbf((u32)&(base_address[j])); } /* for (j = 0; j < NUMMEMWORDS; j++) */ sync(); iobarrier_rw(); } /* for (l=0; lSDRAM_RDCC=0x%08x\n", __func__, temp); #endif pass_result = DQS_calibration_methodA(ddrcal); return pass_result; } /* * DQS_calibration_methodA() * * Autocalibration Method A * * ARRAY [Entire DQS Range] DQS_Valid_Window ; initialized to all zeros * ARRAY [Entire FDBK Range] FDBK_Valid_Window; initialized to all zeros * MEMWRITE(addr, expected_data); * for (i = 0; i < Entire DQS Range; i++) { RQDC.RQFD * for (j = 0; j < Entire FDBK Range; j++) { RFDC.RFFD * MEMREAD(addr, actual_data); * if (actual_data == expected_data) { * DQS_Valid_Window[i] = 1; RQDC.RQFD * FDBK_Valid_Window[i][j] = 1; RFDC.RFFD * } * } * } */ static u32 DQS_calibration_methodA(struct ddrautocal *cal) { ulong rfdc_reg; ulong rffd; ulong rqdc_reg; ulong rqfd; u32 *membase; ulong bxcf; int rqfd_average; int bxcr_num; int rffd_average; int pass; u32 passed = 0; int in_window; struct autocal_regs curr_win_min; struct autocal_regs curr_win_max; struct autocal_regs best_win_min; struct autocal_regs best_win_max; struct autocal_regs loop_win_min; struct autocal_regs loop_win_max; #ifdef DEBUG ulong temp; #endif ulong rdcc; char slash[] = "\\|/-\\|/-"; int loopi = 0; /* start */ in_window = 0; memset(&curr_win_min, 0, sizeof(curr_win_min)); memset(&curr_win_max, 0, sizeof(curr_win_max)); memset(&best_win_min, 0, sizeof(best_win_min)); memset(&best_win_max, 0, sizeof(best_win_max)); memset(&loop_win_min, 0, sizeof(loop_win_min)); memset(&loop_win_max, 0, sizeof(loop_win_max)); rdcc = 0; /* * Program RDCC register * Read sample cycle auto-update enable */ mtsdram(SDRAM_RDCC, ddr_rdss_opt(SDRAM_RDCC_RDSS_T2) | SDRAM_RDCC_RSAE_ENABLE); #ifdef DEBUG mfsdram(SDRAM_RDCC, temp); debug("<%s>SDRAM_RDCC=0x%x\n", __func__, temp); mfsdram(SDRAM_RTSR, temp); debug("<%s>SDRAM_RTSR=0x%x\n", __func__, temp); mfsdram(SDRAM_FCSR, temp); debug("<%s>SDRAM_FCSR=0x%x\n", __func__, temp); #endif /* * Program RQDC register * Internal DQS delay mechanism enable */ mtsdram(SDRAM_RQDC, SDRAM_RQDC_RQDE_ENABLE | SDRAM_RQDC_RQFD_ENCODE(0x00)); #ifdef DEBUG mfsdram(SDRAM_RQDC, temp); debug("<%s>SDRAM_RQDC=0x%x\n", __func__, temp); #endif /* * Program RFDC register * Set Feedback Fractional Oversample * Auto-detect read sample cycle enable */ mtsdram(SDRAM_RFDC, SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) | SDRAM_RFDC_RFFD_ENCODE(0)); #ifdef DEBUG mfsdram(SDRAM_RFDC, temp); debug("<%s>SDRAM_RFDC=0x%x\n", __func__, temp); #endif putc(' '); for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) { mfsdram(SDRAM_RQDC, rqdc_reg); rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK); mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd)); putc('\b'); putc(slash[loopi++ % 8]); curr_win_min.rffd = 0; curr_win_max.rffd = 0; in_window = 0; for (rffd = 0, pass = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) { mfsdram(SDRAM_RFDC, rfdc_reg); rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK); mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd)); for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) { mfsdram(SDRAM_MB0CF + (bxcr_num<<2), bxcf); /* Banks enabled */ if (bxcf & SDRAM_BXCF_M_BE_MASK) { /* Bank is enabled */ membase = get_membase(bxcr_num); pass = short_mem_test(membase); } /* if bank enabled */ } /* for bxcr_num */ /* If this value passed update RFFD windows */ if (pass && !in_window) { /* at the start of window */ in_window = 1; curr_win_min.rffd = curr_win_max.rffd = rffd; curr_win_min.rqfd = curr_win_max.rqfd = rqfd; mfsdram(SDRAM_RDCC, rdcc); /*record this value*/ } else if (!pass && in_window) { /* at end of window */ in_window = 0; } else if (pass && in_window) { /* within the window */ curr_win_max.rffd = rffd; curr_win_max.rqfd = rqfd; } /* else if (!pass && !in_window) skip - no pass, not currently in a window */ if (in_window) { if ((curr_win_max.rffd - curr_win_min.rffd) > (best_win_max.rffd - best_win_min.rffd)) { best_win_min.rffd = curr_win_min.rffd; best_win_max.rffd = curr_win_max.rffd; best_win_min.rqfd = curr_win_min.rqfd; best_win_max.rqfd = curr_win_max.rqfd; cal->rdcc = rdcc; } passed = 1; } } /* RFDC.RFFD */ /* * save-off the best window results of the RFDC.RFFD * for this RQDC.RQFD setting */ /* * if (just ended RFDC.RFDC loop pass window) > * (prior RFDC.RFFD loop pass window) */ if ((best_win_max.rffd - best_win_min.rffd) > (loop_win_max.rffd - loop_win_min.rffd)) { loop_win_min.rffd = best_win_min.rffd; loop_win_max.rffd = best_win_max.rffd; loop_win_min.rqfd = rqfd; loop_win_max.rqfd = rqfd; debug("RQFD.min 0x%08x, RQFD.max 0x%08x, " "RFFD.min 0x%08x, RFFD.max 0x%08x\n", loop_win_min.rqfd, loop_win_max.rqfd, loop_win_min.rffd, loop_win_max.rffd); } } /* RQDC.RQFD */ putc('\b'); debug("\n"); if ((loop_win_min.rffd == 0) && (loop_win_max.rffd == 0) && (best_win_min.rffd == 0) && (best_win_max.rffd == 0) && (best_win_min.rqfd == 0) && (best_win_max.rqfd == 0)) { passed = 0; } /* * Need to program RQDC before RFDC. */ debug("<%s> RQFD Min: 0x%x\n", __func__, loop_win_min.rqfd); debug("<%s> RQFD Max: 0x%x\n", __func__, loop_win_max.rqfd); rqfd_average = loop_win_max.rqfd; if (rqfd_average < 0) rqfd_average = 0; if (rqfd_average > SDRAM_RQDC_RQFD_MAX) rqfd_average = SDRAM_RQDC_RQFD_MAX; debug("<%s> RFFD average: 0x%08x\n", __func__, rqfd_average); mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) | SDRAM_RQDC_RQFD_ENCODE(rqfd_average)); debug("<%s> RFFD Min: 0x%08x\n", __func__, loop_win_min.rffd); debug("<%s> RFFD Max: 0x%08x\n", __func__, loop_win_max.rffd); rffd_average = ((loop_win_min.rffd + loop_win_max.rffd) / 2); if (rffd_average < 0) rffd_average = 0; if (rffd_average > SDRAM_RFDC_RFFD_MAX) rffd_average = SDRAM_RFDC_RFFD_MAX; debug("<%s> RFFD average: 0x%08x\n", __func__, rffd_average); mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average)); /* if something passed, then return the size of the largest window */ if (passed != 0) { passed = loop_win_max.rffd - loop_win_min.rffd; cal->rqfd = rqfd_average; cal->rffd = rffd_average; cal->rffd_min = loop_win_min.rffd; cal->rffd_max = loop_win_max.rffd; } return (u32)passed; } #else /* !defined(CONFIG_PPC4xx_DDR_METHOD_A) */ /*-----------------------------------------------------------------------------+ | program_DQS_calibration_methodB. +-----------------------------------------------------------------------------*/ static u32 program_DQS_calibration_methodB(struct ddrautocal *ddrcal) { u32 pass_result = 0; #ifdef DEBUG ulong temp; #endif /* * Program RDCC register * Read sample cycle auto-update enable */ mtsdram(SDRAM_RDCC, ddr_rdss_opt(SDRAM_RDCC_RDSS_T2) | SDRAM_RDCC_RSAE_ENABLE); #ifdef DEBUG mfsdram(SDRAM_RDCC, temp); debug("<%s>SDRAM_RDCC=0x%08x\n", __func__, temp); #endif /* * Program RQDC register * Internal DQS delay mechanism enable */ mtsdram(SDRAM_RQDC, #if defined(CONFIG_DDR_RQDC_START_VAL) SDRAM_RQDC_RQDE_ENABLE | SDRAM_RQDC_RQFD_ENCODE(CONFIG_DDR_RQDC_START_VAL)); #else SDRAM_RQDC_RQDE_ENABLE | SDRAM_RQDC_RQFD_ENCODE(0x38)); #endif #ifdef DEBUG mfsdram(SDRAM_RQDC, temp); debug("<%s>SDRAM_RQDC=0x%08x\n", __func__, temp); #endif /* * Program RFDC register * Set Feedback Fractional Oversample * Auto-detect read sample cycle enable */ mtsdram(SDRAM_RFDC, SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) | SDRAM_RFDC_RFFD_ENCODE(0)); #ifdef DEBUG mfsdram(SDRAM_RFDC, temp); debug("<%s>SDRAM_RFDC=0x%08x\n", __func__, temp); #endif pass_result = DQS_calibration_methodB(ddrcal); return pass_result; } /* * DQS_calibration_methodB() * * Autocalibration Method B * * ARRAY [Entire DQS Range] DQS_Valid_Window ; initialized to all zeros * ARRAY [Entire Feedback Range] FDBK_Valid_Window; initialized to all zeros * MEMWRITE(addr, expected_data); * Initialialize the DQS delay to 80 degrees (MCIF0_RRQDC[RQFD]=0x38). * * for (j = 0; j < Entire Feedback Range; j++) { * MEMREAD(addr, actual_data); * if (actual_data == expected_data) { * FDBK_Valid_Window[j] = 1; * } * } * * Set MCIF0_RFDC[RFFD] to the middle of the FDBK_Valid_Window. * * for (i = 0; i < Entire DQS Range; i++) { * MEMREAD(addr, actual_data); * if (actual_data == expected_data) { * DQS_Valid_Window[i] = 1; * } * } * * Set MCIF0_RRQDC[RQFD] to the middle of the DQS_Valid_Window. */ /*-----------------------------------------------------------------------------+ | DQS_calibration_methodB. +-----------------------------------------------------------------------------*/ static u32 DQS_calibration_methodB(struct ddrautocal *cal) { ulong rfdc_reg; ulong rffd; ulong rqdc_reg; ulong rqfd; ulong rdcc; u32 *membase; ulong bxcf; int rqfd_average; int bxcr_num; int rffd_average; int pass; uint passed = 0; int in_window; u32 curr_win_min, curr_win_max; u32 best_win_min, best_win_max; u32 size = 0; /*------------------------------------------------------------------ | Test to determine the best read clock delay tuning bits. | | Before the DDR controller can be used, the read clock delay needs to | be set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD]. | This value cannot be hardcoded into the program because it changes | depending on the board's setup and environment. | To do this, all delay values are tested to see if they | work or not. By doing this, you get groups of fails with groups of | passing values. The idea is to find the start and end of a passing | window and take the center of it to use as the read clock delay. | | A failure has to be seen first so that when we hit a pass, we know | that it is truely the start of the window. If we get passing values | to start off with, we don't know if we are at the start of the window | | The code assumes that a failure will always be found. | If a failure is not found, there is no easy way to get the middle | of the passing window. I guess we can pretty much pick any value | but some values will be better than others. Since the lowest speed | we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed), | from experimentation it is safe to say you will always have a failure +-----------------------------------------------------------------*/ debug("\n\n"); in_window = 0; rdcc = 0; curr_win_min = curr_win_max = 0; best_win_min = best_win_max = 0; for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) { mfsdram(SDRAM_RFDC, rfdc_reg); rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK); mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd)); pass = 1; for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) { mfsdram(SDRAM_MB0CF + (bxcr_num<<2), bxcf); /* Banks enabled */ if (bxcf & SDRAM_BXCF_M_BE_MASK) { /* Bank is enabled */ membase = get_membase(bxcr_num); pass &= short_mem_test(membase); } /* if bank enabled */ } /* for bxcf_num */ /* If this value passed */ if (pass && !in_window) { /* start of passing window */ in_window = 1; curr_win_min = curr_win_max = rffd; mfsdram(SDRAM_RDCC, rdcc); /* record this value */ } else if (!pass && in_window) { /* end passing window */ in_window = 0; } else if (pass && in_window) { /* within the passing window */ curr_win_max = rffd; } if (in_window) { if ((curr_win_max - curr_win_min) > (best_win_max - best_win_min)) { best_win_min = curr_win_min; best_win_max = curr_win_max; cal->rdcc = rdcc; } passed = 1; } } /* for rffd */ if ((best_win_min == 0) && (best_win_max == 0)) passed = 0; else size = best_win_max - best_win_min; debug("RFFD Min: 0x%x\n", best_win_min); debug("RFFD Max: 0x%x\n", best_win_max); rffd_average = ((best_win_min + best_win_max) / 2); cal->rffd_min = best_win_min; cal->rffd_max = best_win_max; if (rffd_average < 0) rffd_average = 0; if (rffd_average > SDRAM_RFDC_RFFD_MAX) rffd_average = SDRAM_RFDC_RFFD_MAX; mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average)); rffd = rffd_average; in_window = 0; curr_win_min = curr_win_max = 0; best_win_min = best_win_max = 0; for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) { mfsdram(SDRAM_RQDC, rqdc_reg); rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK); mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd)); pass = 1; for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) { mfsdram(SDRAM_MB0CF + (bxcr_num<<2), bxcf); /* Banks enabled */ if (bxcf & SDRAM_BXCF_M_BE_MASK) { /* Bank is enabled */ membase = get_membase(bxcr_num); pass &= short_mem_test(membase); } /* if bank enabled */ } /* for bxcf_num */ /* If this value passed */ if (pass && !in_window) { in_window = 1; curr_win_min = curr_win_max = rqfd; } else if (!pass && in_window) { in_window = 0; } else if (pass && in_window) { curr_win_max = rqfd; } if (in_window) { if ((curr_win_max - curr_win_min) > (best_win_max - best_win_min)) { best_win_min = curr_win_min; best_win_max = curr_win_max; } passed = 1; } } /* for rqfd */ if ((best_win_min == 0) && (best_win_max == 0)) passed = 0; debug("RQFD Min: 0x%x\n", best_win_min); debug("RQFD Max: 0x%x\n", best_win_max); rqfd_average = ((best_win_min + best_win_max) / 2); if (rqfd_average < 0) rqfd_average = 0; if (rqfd_average > SDRAM_RQDC_RQFD_MAX) rqfd_average = SDRAM_RQDC_RQFD_MAX; mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) | SDRAM_RQDC_RQFD_ENCODE(rqfd_average)); mfsdram(SDRAM_RQDC, rqdc_reg); mfsdram(SDRAM_RFDC, rfdc_reg); /* * Need to program RQDC before RFDC. The value is read above. * That is the reason why auto cal not work. * See, comments below. */ mtsdram(SDRAM_RQDC, rqdc_reg); mtsdram(SDRAM_RFDC, rfdc_reg); debug("RQDC: 0x%08X\n", rqdc_reg); debug("RFDC: 0x%08X\n", rfdc_reg); /* if something passed, then return the size of the largest window */ if (passed != 0) { passed = size; cal->rqfd = rqfd_average; cal->rffd = rffd_average; } return (uint)passed; } #endif /* defined(CONFIG_PPC4xx_DDR_METHOD_A) */ /* * Default table for DDR auto-calibration of all * possible WRDTR and CLKTR values. * Table format is: * {SDRAM_WRDTR.[WDTR], SDRAM_CLKTR.[CKTR]} * * Table is terminated with {-1, -1} value pair. * * Board vendors can specify their own board specific subset of * known working {SDRAM_WRDTR.[WDTR], SDRAM_CLKTR.[CKTR]} value * pairs via a board defined ddr_scan_option() function. */ static struct sdram_timing full_scan_options[] = { {0, 0}, {0, 1}, {0, 2}, {0, 3}, {1, 0}, {1, 1}, {1, 2}, {1, 3}, {2, 0}, {2, 1}, {2, 2}, {2, 3}, {3, 0}, {3, 1}, {3, 2}, {3, 3}, {4, 0}, {4, 1}, {4, 2}, {4, 3}, {5, 0}, {5, 1}, {5, 2}, {5, 3}, {6, 0}, {6, 1}, {6, 2}, {6, 3}, {-1, -1} }; /*---------------------------------------------------------------------------+ | DQS_calibration. +----------------------------------------------------------------------------*/ u32 DQS_autocalibration(void) { u32 wdtr; u32 clkp; u32 result = 0; u32 best_result = 0; u32 best_rdcc; struct ddrautocal ddrcal; struct autocal_clks tcal; ulong rfdc_reg; ulong rqdc_reg; u32 val; int verbose_lvl = 0; char *str; char slash[] = "\\|/-\\|/-"; int loopi = 0; struct sdram_timing *scan_list; #if defined(DEBUG_PPC4xx_DDR_AUTOCALIBRATION) int i; char tmp[64]; /* long enough for environment variables */ #endif memset(&tcal, 0, sizeof(tcal)); scan_list = ddr_scan_option(full_scan_options); mfsdram(SDRAM_MCOPT1, val); if ((val & SDRAM_MCOPT1_MCHK_CHK_REP) == SDRAM_MCOPT1_MCHK_CHK_REP) str = "ECC Auto calibration -"; else str = "Auto calibration -"; puts(str); #if defined(DEBUG_PPC4xx_DDR_AUTOCALIBRATION) i = getenv_r("autocalib", tmp, sizeof(tmp)); if (i < 0) strcpy(tmp, CONFIG_AUTOCALIB); if (strcmp(tmp, "final") == 0) { /* display the final autocalibration results only */ verbose_lvl = 1; } else if (strcmp(tmp, "loop") == 0) { /* display summary autocalibration info per iteration */ verbose_lvl = 2; } else if (strcmp(tmp, "display") == 0) { /* display full debug autocalibration window info. */ verbose_lvl = 3; } #endif /* (DEBUG_PPC4xx_DDR_AUTOCALIBRATION) */ best_rdcc = (SDRAM_RDCC_RDSS_T4 >> 30); while ((scan_list->wrdtr != -1) && (scan_list->clktr != -1)) { wdtr = scan_list->wrdtr; clkp = scan_list->clktr; mfsdram(SDRAM_WRDTR, val); val &= ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK); mtsdram(SDRAM_WRDTR, (val | ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | (wdtr << 25)))); mtsdram(SDRAM_CLKTR, clkp << 30); relock_memory_DLL(); putc('\b'); putc(slash[loopi++ % 8]); #ifdef DEBUG debug("\n"); debug("*** --------------\n"); mfsdram(SDRAM_WRDTR, val); debug("*** SDRAM_WRDTR set to 0x%08x\n", val); mfsdram(SDRAM_CLKTR, val); debug("*** SDRAM_CLKTR set to 0x%08x\n", val); #endif debug("\n"); if (verbose_lvl > 2) { printf("*** SDRAM_WRDTR (wdtr) set to %d\n", wdtr); printf("*** SDRAM_CLKTR (clkp) set to %d\n", clkp); } memset(&ddrcal, 0, sizeof(ddrcal)); /* * DQS calibration. */ /* * program_DQS_calibration_method[A|B]() returns 0 if no * passing RFDC.[RFFD] window is found or returns the size * of the best passing window; in the case of a found passing * window, the ddrcal will contain the values of the best * window RQDC.[RQFD] and RFDC.[RFFD]. */ /* * Call PPC4xx SDRAM DDR autocalibration methodA or methodB. * Default is methodB. * Defined the autocalibration method in the board specific * header file. * Please see include/configs/kilauea.h for an example for * a board specific implementation. */ #if defined(CONFIG_PPC4xx_DDR_METHOD_A) result = program_DQS_calibration_methodA(&ddrcal); #else result = program_DQS_calibration_methodB(&ddrcal); #endif sync(); /* * Clear potential errors resulting from auto-calibration. * If not done, then we could get an interrupt later on when * exceptions are enabled. */ set_mcsr(get_mcsr()); val = ddrcal.rdcc; /* RDCC from the best passing window */ udelay(100); if (verbose_lvl > 1) { char *tstr; switch ((val >> 30)) { case 0: if (result != 0) tstr = "T1"; else tstr = "N/A"; break; case 1: tstr = "T2"; break; case 2: tstr = "T3"; break; case 3: tstr = "T4"; break; default: tstr = "unknown"; break; } printf("** WRDTR(%d) CLKTR(%d), Wind (%d), best (%d), " "max-min(0x%04x)(0x%04x), RDCC: %s\n", wdtr, clkp, result, best_result, ddrcal.rffd_min, ddrcal.rffd_max, tstr); } /* * The DQS calibration "result" is either "0" * if no passing window was found, or is the * size of the RFFD passing window. */ /* * want the lowest Read Sample Cycle Select */ val = SDRAM_RDCC_RDSS_DECODE(val); debug("*** (%d) (%d) current_rdcc, best_rdcc\n", val, best_rdcc); if ((result != 0) && (val >= SDRAM_RDCC_RDSS_VAL(SDRAM_RDCC_RDSS_T2))) { if (((result == best_result) && (val < best_rdcc)) || ((result > best_result) && (val <= best_rdcc))) { tcal.autocal.flags = 1; debug("*** (%d)(%d) result passed window " "size: 0x%08x, rqfd = 0x%08x, " "rffd = 0x%08x, rdcc = 0x%08x\n", wdtr, clkp, result, ddrcal.rqfd, ddrcal.rffd, ddrcal.rdcc); /* * Save the SDRAM_WRDTR and SDRAM_CLKTR * settings for the largest returned * RFFD passing window size. */ best_rdcc = val; tcal.clocks.wrdtr = wdtr; tcal.clocks.clktr = clkp; tcal.clocks.rdcc = SDRAM_RDCC_RDSS_ENCODE(val); tcal.autocal.rqfd = ddrcal.rqfd; tcal.autocal.rffd = ddrcal.rffd; best_result = result; if (verbose_lvl > 2) { printf("** (%d)(%d) " "best result: 0x%04x\n", wdtr, clkp, best_result); printf("** (%d)(%d) " "best WRDTR: 0x%04x\n", wdtr, clkp, tcal.clocks.wrdtr); printf("** (%d)(%d) " "best CLKTR: 0x%04x\n", wdtr, clkp, tcal.clocks.clktr); printf("** (%d)(%d) " "best RQDC: 0x%04x\n", wdtr, clkp, tcal.autocal.rqfd); printf("** (%d)(%d) " "best RFDC: 0x%04x\n", wdtr, clkp, tcal.autocal.rffd); printf("** (%d)(%d) " "best RDCC: 0x%08x\n", wdtr, clkp, (u32)tcal.clocks.rdcc); mfsdram(SDRAM_RTSR, val); printf("** (%d)(%d) best " "loop RTSR: 0x%08x\n", wdtr, clkp, val); mfsdram(SDRAM_FCSR, val); printf("** (%d)(%d) best " "loop FCSR: 0x%08x\n", wdtr, clkp, val); } } } /* if ((result != 0) && (val >= (ddr_rdss_opt()))) */ scan_list++; } /* while ((scan_list->wrdtr != -1) && (scan_list->clktr != -1)) */ if (tcal.autocal.flags == 1) { if (verbose_lvl > 0) { printf("*** --------------\n"); printf("*** best_result window size: %d\n", best_result); printf("*** best_result WRDTR: 0x%04x\n", tcal.clocks.wrdtr); printf("*** best_result CLKTR: 0x%04x\n", tcal.clocks.clktr); printf("*** best_result RQFD: 0x%04x\n", tcal.autocal.rqfd); printf("*** best_result RFFD: 0x%04x\n", tcal.autocal.rffd); printf("*** best_result RDCC: 0x%04x\n", tcal.clocks.rdcc); printf("*** --------------\n"); printf("\n"); } /* * if got best passing result window, then lock in the * best CLKTR, WRDTR, RQFD, and RFFD values */ mfsdram(SDRAM_WRDTR, val); mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) | ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | (tcal.clocks.wrdtr << 25))); mtsdram(SDRAM_CLKTR, tcal.clocks.clktr << 30); relock_memory_DLL(); mfsdram(SDRAM_RQDC, rqdc_reg); rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK); mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(tcal.autocal.rqfd)); mfsdram(SDRAM_RQDC, rqdc_reg); debug("*** best_result: read value SDRAM_RQDC 0x%08x\n", rqdc_reg); mfsdram(SDRAM_RFDC, rfdc_reg); rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK); mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(tcal.autocal.rffd)); mfsdram(SDRAM_RFDC, rfdc_reg); debug("*** best_result: read value SDRAM_RFDC 0x%08x\n", rfdc_reg); mfsdram(SDRAM_RDCC, val); debug("*** SDRAM_RDCC 0x%08x\n", val); } else { /* * no valid windows were found */ printf("DQS memory calibration window can not be determined, " "terminating u-boot.\n"); ppc4xx_ibm_ddr2_register_dump(); spd_ddr_init_hang(); } blank_string(strlen(str)); return 0; } #else /* defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */ u32 DQS_autocalibration(void) { return 0; } #endif /* !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL) */ #endif /* defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) */