/* originally from linux source. * removed the dependencies on CONFIG_ values * removed virt_to_phys stuff (and in fact everything surrounded by #if __KERNEL__) * Modified By Rob Taylor, Flying Pig Systems, 2000 */ #ifndef _PPC_IO_H #define _PPC_IO_H #include <asm/byteorder.h> #ifdef CONFIG_ADDR_MAP #include <addr_map.h> #endif #define SIO_CONFIG_RA 0x398 #define SIO_CONFIG_RD 0x399 #ifndef _IO_BASE #define _IO_BASE 0 #endif #define readb(addr) in_8((volatile u8 *)(addr)) #define writeb(b,addr) out_8((volatile u8 *)(addr), (b)) #if !defined(__BIG_ENDIAN) #define readw(addr) (*(volatile u16 *) (addr)) #define readl(addr) (*(volatile u32 *) (addr)) #define writew(b,addr) ((*(volatile u16 *) (addr)) = (b)) #define writel(b,addr) ((*(volatile u32 *) (addr)) = (b)) #else #define readw(addr) in_le16((volatile u16 *)(addr)) #define readl(addr) in_le32((volatile u32 *)(addr)) #define writew(b,addr) out_le16((volatile u16 *)(addr),(b)) #define writel(b,addr) out_le32((volatile u32 *)(addr),(b)) #endif /* * The insw/outsw/insl/outsl macros don't do byte-swapping. * They are only used in practice for transferring buffers which * are arrays of bytes, and byte-swapping is not appropriate in * that case. - paulus */ #define insb(port, buf, ns) _insb((u8 *)((port)+_IO_BASE), (buf), (ns)) #define outsb(port, buf, ns) _outsb((u8 *)((port)+_IO_BASE), (buf), (ns)) #define insw(port, buf, ns) _insw_ns((u16 *)((port)+_IO_BASE), (buf), (ns)) #define outsw(port, buf, ns) _outsw_ns((u16 *)((port)+_IO_BASE), (buf), (ns)) #define insl(port, buf, nl) _insl_ns((u32 *)((port)+_IO_BASE), (buf), (nl)) #define outsl(port, buf, nl) _outsl_ns((u32 *)((port)+_IO_BASE), (buf), (nl)) #define inb(port) in_8((u8 *)((port)+_IO_BASE)) #define outb(val, port) out_8((u8 *)((port)+_IO_BASE), (val)) #if !defined(__BIG_ENDIAN) #define inw(port) in_be16((u16 *)((port)+_IO_BASE)) #define outw(val, port) out_be16((u16 *)((port)+_IO_BASE), (val)) #define inl(port) in_be32((u32 *)((port)+_IO_BASE)) #define outl(val, port) out_be32((u32 *)((port)+_IO_BASE), (val)) #else #define inw(port) in_le16((u16 *)((port)+_IO_BASE)) #define outw(val, port) out_le16((u16 *)((port)+_IO_BASE), (val)) #define inl(port) in_le32((u32 *)((port)+_IO_BASE)) #define outl(val, port) out_le32((u32 *)((port)+_IO_BASE), (val)) #endif #define inb_p(port) in_8((u8 *)((port)+_IO_BASE)) #define outb_p(val, port) out_8((u8 *)((port)+_IO_BASE), (val)) #define inw_p(port) in_le16((u16 *)((port)+_IO_BASE)) #define outw_p(val, port) out_le16((u16 *)((port)+_IO_BASE), (val)) #define inl_p(port) in_le32((u32 *)((port)+_IO_BASE)) #define outl_p(val, port) out_le32((u32 *)((port)+_IO_BASE), (val)) extern void _insb(volatile u8 *port, void *buf, int ns); extern void _outsb(volatile u8 *port, const void *buf, int ns); extern void _insw(volatile u16 *port, void *buf, int ns); extern void _outsw(volatile u16 *port, const void *buf, int ns); extern void _insl(volatile u32 *port, void *buf, int nl); extern void _outsl(volatile u32 *port, const void *buf, int nl); extern void _insw_ns(volatile u16 *port, void *buf, int ns); extern void _outsw_ns(volatile u16 *port, const void *buf, int ns); extern void _insl_ns(volatile u32 *port, void *buf, int nl); extern void _outsl_ns(volatile u32 *port, const void *buf, int nl); /* * The *_ns versions below don't do byte-swapping. * Neither do the standard versions now, these are just here * for older code. */ #define insw_ns(port, buf, ns) _insw_ns((u16 *)((port)+_IO_BASE), (buf), (ns)) #define outsw_ns(port, buf, ns) _outsw_ns((u16 *)((port)+_IO_BASE), (buf), (ns)) #define insl_ns(port, buf, nl) _insl_ns((u32 *)((port)+_IO_BASE), (buf), (nl)) #define outsl_ns(port, buf, nl) _outsl_ns((u32 *)((port)+_IO_BASE), (buf), (nl)) #define IO_SPACE_LIMIT ~0 #define memset_io(a,b,c) memset((void *)(a),(b),(c)) #define memcpy_fromio(a,b,c) memcpy((a),(void *)(b),(c)) #define memcpy_toio(a,b,c) memcpy((void *)(a),(b),(c)) /* * Enforce In-order Execution of I/O: * Acts as a barrier to ensure all previous I/O accesses have * completed before any further ones are issued. */ static inline void eieio(void) { __asm__ __volatile__ ("eieio" : : : "memory"); } static inline void sync(void) { __asm__ __volatile__ ("sync" : : : "memory"); } static inline void isync(void) { __asm__ __volatile__ ("isync" : : : "memory"); } /* Enforce in-order execution of data I/O. * No distinction between read/write on PPC; use eieio for all three. */ #define iobarrier_rw() eieio() #define iobarrier_r() eieio() #define iobarrier_w() eieio() #define mb() sync() #define isb() isync() /* * Non ordered and non-swapping "raw" accessors */ #define PCI_FIX_ADDR(addr) (addr) static inline unsigned char __raw_readb(const volatile void __iomem *addr) { return *(volatile unsigned char *)PCI_FIX_ADDR(addr); } static inline unsigned short __raw_readw(const volatile void __iomem *addr) { return *(volatile unsigned short *)PCI_FIX_ADDR(addr); } static inline unsigned int __raw_readl(const volatile void __iomem *addr) { return *(volatile unsigned int *)PCI_FIX_ADDR(addr); } static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) { *(volatile unsigned char *)PCI_FIX_ADDR(addr) = v; } static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) { *(volatile unsigned short *)PCI_FIX_ADDR(addr) = v; } static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) { *(volatile unsigned int *)PCI_FIX_ADDR(addr) = v; } /* * 8, 16 and 32 bit, big and little endian I/O operations, with barrier. * * Read operations have additional twi & isync to make sure the read * is actually performed (i.e. the data has come back) before we start * executing any following instructions. */ static inline u8 in_8(const volatile unsigned char __iomem *addr) { u8 ret; __asm__ __volatile__( "sync; lbz%U1%X1 %0,%1;\n" "twi 0,%0,0;\n" "isync" : "=r" (ret) : "m" (*addr)); return ret; } static inline void out_8(volatile unsigned char __iomem *addr, u8 val) { __asm__ __volatile__("sync;\n" "stb%U0%X0 %1,%0;\n" : "=m" (*addr) : "r" (val)); } static inline u16 in_le16(const volatile unsigned short __iomem *addr) { u16 ret; __asm__ __volatile__("sync; lhbrx %0,0,%1;\n" "twi 0,%0,0;\n" "isync" : "=r" (ret) : "r" (addr), "m" (*addr)); return ret; } static inline u16 in_be16(const volatile unsigned short __iomem *addr) { u16 ret; __asm__ __volatile__("sync; lhz%U1%X1 %0,%1;\n" "twi 0,%0,0;\n" "isync" : "=r" (ret) : "m" (*addr)); return ret; } static inline void out_le16(volatile unsigned short __iomem *addr, u16 val) { __asm__ __volatile__("sync; sthbrx %1,0,%2" : "=m" (*addr) : "r" (val), "r" (addr)); } static inline void out_be16(volatile unsigned short __iomem *addr, u16 val) { __asm__ __volatile__("sync; sth%U0%X0 %1,%0" : "=m" (*addr) : "r" (val)); } static inline u32 in_le32(const volatile unsigned __iomem *addr) { u32 ret; __asm__ __volatile__("sync; lwbrx %0,0,%1;\n" "twi 0,%0,0;\n" "isync" : "=r" (ret) : "r" (addr), "m" (*addr)); return ret; } static inline u32 in_be32(const volatile unsigned __iomem *addr) { u32 ret; __asm__ __volatile__("sync; lwz%U1%X1 %0,%1;\n" "twi 0,%0,0;\n" "isync" : "=r" (ret) : "m" (*addr)); return ret; } static inline void out_le32(volatile unsigned __iomem *addr, u32 val) { __asm__ __volatile__("sync; stwbrx %1,0,%2" : "=m" (*addr) : "r" (val), "r" (addr)); } static inline void out_be32(volatile unsigned __iomem *addr, u32 val) { __asm__ __volatile__("sync; stw%U0%X0 %1,%0" : "=m" (*addr) : "r" (val)); } /* Clear and set bits in one shot. These macros can be used to clear and * set multiple bits in a register using a single call. These macros can * also be used to set a multiple-bit bit pattern using a mask, by * specifying the mask in the 'clear' parameter and the new bit pattern * in the 'set' parameter. */ #define clrbits(type, addr, clear) \ out_##type((addr), in_##type(addr) & ~(clear)) #define setbits(type, addr, set) \ out_##type((addr), in_##type(addr) | (set)) #define clrsetbits(type, addr, clear, set) \ out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) #define clrbits_be32(addr, clear) clrbits(be32, addr, clear) #define setbits_be32(addr, set) setbits(be32, addr, set) #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) #define clrbits_le32(addr, clear) clrbits(le32, addr, clear) #define setbits_le32(addr, set) setbits(le32, addr, set) #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) #define clrbits_be16(addr, clear) clrbits(be16, addr, clear) #define setbits_be16(addr, set) setbits(be16, addr, set) #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) #define clrbits_le16(addr, clear) clrbits(le16, addr, clear) #define setbits_le16(addr, set) setbits(le16, addr, set) #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) #define clrbits_8(addr, clear) clrbits(8, addr, clear) #define setbits_8(addr, set) setbits(8, addr, set) #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) #define readb_be(addr) \ __raw_readb((__force unsigned *)(addr)) #define readw_be(addr) \ be16_to_cpu(__raw_readw((__force unsigned *)(addr))) #define readl_be(addr) \ be32_to_cpu(__raw_readl((__force unsigned *)(addr))) #define readq_be(addr) \ be64_to_cpu(__raw_readq((__force unsigned *)(addr))) #define writeb_be(val, addr) \ __raw_writeb((val), (__force unsigned *)(addr)) #define writew_be(val, addr) \ __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr)) #define writel_be(val, addr) \ __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr)) #define writeq_be(val, addr) \ __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr)) static inline void *phys_to_virt(phys_addr_t paddr) { #ifdef CONFIG_ADDR_MAP return addrmap_phys_to_virt(paddr); #else return (void *)((unsigned long)paddr); #endif } #define phys_to_virt phys_to_virt static inline phys_addr_t virt_to_phys(void * vaddr) { #ifdef CONFIG_ADDR_MAP return addrmap_virt_to_phys(vaddr); #else return (phys_addr_t)((unsigned long)vaddr); #endif } #define virt_to_phys virt_to_phys #include <asm-generic/io.h> #endif