#ifndef _ASM_IO_H #define _ASM_IO_H #include <linux/compiler.h> /* * This file contains the definitions for the x86 IO instructions * inb/inw/inl/outb/outw/outl and the "string versions" of the same * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" * versions of the single-IO instructions (inb_p/inw_p/..). * * This file is not meant to be obfuscating: it's just complicated * to (a) handle it all in a way that makes gcc able to optimize it * as well as possible and (b) trying to avoid writing the same thing * over and over again with slight variations and possibly making a * mistake somewhere. */ /* * Thanks to James van Artsdalen for a better timing-fix than * the two short jumps: using outb's to a nonexistent port seems * to guarantee better timings even on fast machines. * * On the other hand, I'd like to be sure of a non-existent port: * I feel a bit unsafe about using 0x80 (should be safe, though) * * Linus */ /* * Bit simplified and optimized by Jan Hubicka * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999. * * isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added, * isa_read[wl] and isa_write[wl] fixed * - Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #define IO_SPACE_LIMIT 0xffff #include <asm/types.h> #ifdef __KERNEL__ /* * readX/writeX() are used to access memory mapped devices. On some * architectures the memory mapped IO stuff needs to be accessed * differently. On the x86 architecture, we just read/write the * memory location directly. */ #define readb(addr) (*(volatile unsigned char *) (addr)) #define readw(addr) (*(volatile unsigned short *) (addr)) #define readl(addr) (*(volatile unsigned int *) (addr)) #define __raw_readb readb #define __raw_readw readw #define __raw_readl readl #define writeb(b,addr) (*(volatile unsigned char *) (addr) = (b)) #define writew(b,addr) (*(volatile unsigned short *) (addr) = (b)) #define writel(b,addr) (*(volatile unsigned int *) (addr) = (b)) #define __raw_writeb writeb #define __raw_writew writew #define __raw_writel writel #define memset_io(a,b,c) memset((a),(b),(c)) #define memcpy_fromio(a,b,c) memcpy((a),(b),(c)) #define memcpy_toio(a,b,c) memcpy((a),(b),(c)) #define write_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v), a) #define read_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a)) #define write_le64(a, v) write_arch(q, le64, a, v) #define write_le32(a, v) write_arch(l, le32, a, v) #define write_le16(a, v) write_arch(w, le16, a, v) #define read_le64(a) read_arch(q, le64, a) #define read_le32(a) read_arch(l, le32, a) #define read_le16(a) read_arch(w, le16, a) #define write_be32(a, v) write_arch(l, be32, a, v) #define write_be16(a, v) write_arch(w, be16, a, v) #define read_be32(a) read_arch(l, be32, a) #define read_be16(a) read_arch(w, be16, a) #define write_8(a, v) __raw_writeb(v, a) #define read_8(a) __raw_readb(a) #define clrbits(type, addr, clear) \ write_##type((addr), read_##type(addr) & ~(clear)) #define setbits(type, addr, set) \ write_##type((addr), read_##type(addr) | (set)) #define clrsetbits(type, addr, clear, set) \ write_##type((addr), (read_##type(addr) & ~(clear)) | (set)) #define clrbits_be32(addr, clear) clrbits(be32, addr, clear) #define setbits_be32(addr, set) setbits(be32, addr, set) #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) #define clrbits_le32(addr, clear) clrbits(le32, addr, clear) #define setbits_le32(addr, set) setbits(le32, addr, set) #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) #define clrbits_be16(addr, clear) clrbits(be16, addr, clear) #define setbits_be16(addr, set) setbits(be16, addr, set) #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) #define clrbits_le16(addr, clear) clrbits(le16, addr, clear) #define setbits_le16(addr, set) setbits(le16, addr, set) #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) #define clrbits_8(addr, clear) clrbits(8, addr, clear) #define setbits_8(addr, set) setbits(8, addr, set) #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) /* * ISA space is 'always mapped' on a typical x86 system, no need to * explicitly ioremap() it. The fact that the ISA IO space is mapped * to PAGE_OFFSET is pure coincidence - it does not mean ISA values * are physical addresses. The following constant pointer can be * used as the IO-area pointer (it can be iounmapped as well, so the * analogy with PCI is quite large): */ #define isa_readb(a) readb((a)) #define isa_readw(a) readw((a)) #define isa_readl(a) readl((a)) #define isa_writeb(b,a) writeb(b,(a)) #define isa_writew(w,a) writew(w,(a)) #define isa_writel(l,a) writel(l,(a)) #define isa_memset_io(a,b,c) memset_io((a),(b),(c)) #define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),(b),(c)) #define isa_memcpy_toio(a,b,c) memcpy_toio((a),(b),(c)) static inline int check_signature(unsigned long io_addr, const unsigned char *signature, int length) { int retval = 0; do { if (readb(io_addr) != *signature) goto out; io_addr++; signature++; length--; } while (length); retval = 1; out: return retval; } /** * isa_check_signature - find BIOS signatures * @io_addr: mmio address to check * @signature: signature block * @length: length of signature * * Perform a signature comparison with the ISA mmio address io_addr. * Returns 1 on a match. * * This function is deprecated. New drivers should use ioremap and * check_signature. */ static inline int isa_check_signature(unsigned long io_addr, const unsigned char *signature, int length) { int retval = 0; do { if (isa_readb(io_addr) != *signature) goto out; io_addr++; signature++; length--; } while (length); retval = 1; out: return retval; } #endif /* __KERNEL__ */ #ifdef SLOW_IO_BY_JUMPING #define __SLOW_DOWN_IO "\njmp 1f\n1:\tjmp 1f\n1:" #else #define __SLOW_DOWN_IO "\noutb %%al,$0xed" #endif #ifdef REALLY_SLOW_IO #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO #else #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO #endif /* * Talk about misusing macros.. */ #define __OUT1(s,x) \ static inline void _out##s(unsigned x value, unsigned short port) { #define __OUT2(s,s1,s2) \ __asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1" #define __OUT(s,s1,x) \ __OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "Nd" (port)); } \ __OUT1(s##_p,x) __OUT2(s,s1,"w") __FULL_SLOW_DOWN_IO : : "a" (value), "Nd" (port));} #define __IN1(s) \ static inline RETURN_TYPE _in##s(unsigned short port) { RETURN_TYPE _v; #define __IN2(s,s1,s2) \ __asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0" #define __IN(s,s1,i...) \ __IN1(s) __IN2(s,s1,"w") : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \ __IN1(s##_p) __IN2(s,s1,"w") __FULL_SLOW_DOWN_IO : "=a" (_v) : "Nd" (port) ,##i ); return _v; } #define __INS(s) \ static inline void ins##s(unsigned short port, void * addr, unsigned long count) \ { __asm__ __volatile__ ("rep ; ins" #s \ : "=D" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } #define __OUTS(s) \ static inline void outs##s(unsigned short port, const void * addr, unsigned long count) \ { __asm__ __volatile__ ("rep ; outs" #s \ : "=S" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } #define RETURN_TYPE unsigned char __IN(b,"") #undef RETURN_TYPE #define RETURN_TYPE unsigned short __IN(w,"") #undef RETURN_TYPE #define RETURN_TYPE unsigned int __IN(l,"") #undef RETURN_TYPE #define inb(port) _inb((uintptr_t)(port)) #define inw(port) _inw((uintptr_t)(port)) #define inl(port) _inl((uintptr_t)(port)) __OUT(b,"b",char) __OUT(w,"w",short) __OUT(l,,int) #define outb(val, port) _outb(val, (uintptr_t)(port)) #define outw(val, port) _outw(val, (uintptr_t)(port)) #define outl(val, port) _outl(val, (uintptr_t)(port)) __INS(b) __INS(w) __INS(l) __OUTS(b) __OUTS(w) __OUTS(l) /* IO space accessors */ #define clrio(type, addr, clear) \ out##type(in##type(addr) & ~(clear), (addr)) #define setio(type, addr, set) \ out##type(in##type(addr) | (set), (addr)) #define clrsetio(type, addr, clear, set) \ out##type((in##type(addr) & ~(clear)) | (set), (addr)) #define clrio_32(addr, clear) clrio(l, addr, clear) #define clrio_16(addr, clear) clrio(w, addr, clear) #define clrio_8(addr, clear) clrio(b, addr, clear) #define setio_32(addr, set) setio(l, addr, set) #define setio_16(addr, set) setio(w, addr, set) #define setio_8(addr, set) setio(b, addr, set) #define clrsetio_32(addr, clear, set) clrsetio(l, addr, clear, set) #define clrsetio_16(addr, clear, set) clrsetio(w, addr, clear, set) #define clrsetio_8(addr, clear, set) clrsetio(b, addr, clear, set) static inline void sync(void) { } /* * Given a physical address and a length, return a virtual address * that can be used to access the memory range with the caching * properties specified by "flags". */ #define MAP_NOCACHE (0) #define MAP_WRCOMBINE (0) #define MAP_WRBACK (0) #define MAP_WRTHROUGH (0) static inline void * map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags) { return (void *)(uintptr_t)paddr; } /* * Take down a mapping set up by map_physmem(). */ static inline void unmap_physmem(void *vaddr, unsigned long flags) { } static inline phys_addr_t virt_to_phys(void * vaddr) { return (phys_addr_t)(uintptr_t)(vaddr); } /* * TODO: The kernel offers some more advanced versions of barriers, it might * have some advantages to use them instead of the simple one here. */ #define dmb() __asm__ __volatile__ ("" : : : "memory") #define __iormb() dmb() #define __iowmb() dmb() #endif