/* * (C) Copyright 2001 * Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ /* sdram_init.c - automatic memory sizing */ #include <common.h> #include <74xx_7xx.h> #include <galileo/memory.h> #include <galileo/pci.h> #include <galileo/gt64260R.h> #include <net.h> #include "eth.h" #include "mpsc.h" #include "i2c.h" #include "64260.h" DECLARE_GLOBAL_DATA_PTR; /* #define DEBUG */ #define MAP_PCI #ifdef DEBUG #define DP(x) x #else #define DP(x) #endif #define GB (1 << 30) /* structure to store the relevant information about an sdram bank */ typedef struct sdram_info { uchar drb_size; uchar registered, ecc; uchar tpar; uchar tras_clocks; uchar burst_len; uchar banks, slot; int size; /* detected size, not from I2C but from dram_size() */ } sdram_info_t; #ifdef DEBUG void dump_dimm_info (struct sdram_info *d) { static const char *ecc_legend[] = { "", " Parity", " ECC" }; printf ("dimm%s %sDRAM: %dMibytes:\n", ecc_legend[d->ecc], d->registered ? "R" : "", (d->size >> 20)); printf (" drb=%d tpar=%d tras=%d burstlen=%d banks=%d slot=%d\n", d->drb_size, d->tpar, d->tras_clocks, d->burst_len, d->banks, d->slot); } #endif static int memory_map_bank (unsigned int bankNo, unsigned int bankBase, unsigned int bankLength) { #ifdef DEBUG if (bankLength > 0) { printf ("mapping bank %d at %08x - %08x\n", bankNo, bankBase, bankBase + bankLength - 1); } else { printf ("unmapping bank %d\n", bankNo); } #endif memoryMapBank (bankNo, bankBase, bankLength); return 0; } #ifdef MAP_PCI static int memory_map_bank_pci (unsigned int bankNo, unsigned int bankBase, unsigned int bankLength) { PCI_HOST host; for (host = PCI_HOST0; host <= PCI_HOST1; host++) { const int features = PREFETCH_ENABLE | DELAYED_READ_ENABLE | AGGRESSIVE_PREFETCH | READ_LINE_AGGRESSIVE_PREFETCH | READ_MULTI_AGGRESSIVE_PREFETCH | MAX_BURST_4 | PCI_NO_SWAP; pciMapMemoryBank (host, bankNo, bankBase, bankLength); pciSetRegionSnoopMode (host, bankNo, PCI_SNOOP_WB, bankBase, bankLength); pciSetRegionFeatures (host, bankNo, features, bankBase, bankLength); } return 0; } #endif /* ------------------------------------------------------------------------- */ /* much of this code is based on (or is) the code in the pip405 port */ /* thanks go to the authors of said port - Josh */ /* * translate ns.ns/10 coding of SPD timing values * into 10 ps unit values */ static inline unsigned short NS10to10PS (unsigned char spd_byte) { unsigned short ns, ns10; /* isolate upper nibble */ ns = (spd_byte >> 4) & 0x0F; /* isolate lower nibble */ ns10 = (spd_byte & 0x0F); return (ns * 100 + ns10 * 10); } /* * translate ns coding of SPD timing values * into 10 ps unit values */ static inline unsigned short NSto10PS (unsigned char spd_byte) { return (spd_byte * 100); } #ifdef CONFIG_ZUMA_V2 static int check_dimm (uchar slot, sdram_info_t * info) { /* assume 2 dimms, 2 banks each 256M - we dont have an * dimm i2c so rely on the detection routines later */ memset (info, 0, sizeof (*info)); info->slot = slot; info->banks = 2; /* Detect later */ info->registered = 0; info->drb_size = 32; /* 16 - 256MBit, 32 - 512MBit but doesn't matter, both do same thing in setup_sdram() */ info->tpar = 3; info->tras_clocks = 5; info->burst_len = 4; #ifdef CONFIG_ECC info->ecc = 0; /* Detect later */ #endif /* CONFIG_ECC */ return 0; } #elif defined(CONFIG_P3G4) static int check_dimm (uchar slot, sdram_info_t * info) { memset (info, 0, sizeof (*info)); if (slot) return 0; info->slot = slot; info->banks = 1; info->registered = 0; info->drb_size = 4; info->tpar = 3; info->tras_clocks = 6; info->burst_len = 4; #ifdef CONFIG_ECC info->ecc = 2; #endif return 0; } #else /* ! CONFIG_ZUMA_V2 && ! CONFIG_P3G4 */ /* This code reads the SPD chip on the sdram and populates * the array which is passed in with the relevant information */ static int check_dimm (uchar slot, sdram_info_t * info) { uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR; int ret; uchar rows, cols, sdram_banks, supp_cal, width, cal_val; ulong tmemclk; uchar trp_clocks, trcd_clocks; uchar data[128]; get_clocks (); tmemclk = 1000000000 / (gd->bus_clk / 100); /* in 10 ps units */ #ifdef CONFIG_EVB64260_750CX if (0 != slot) { printf ("check_dimm: The EVB-64260-750CX only has 1 DIMM,"); printf (" called with slot=%d insetad!\n", slot); return 0; } #endif DP (puts ("before i2c read\n")); ret = i2c_read (addr, 0, 128, data, 0); DP (puts ("after i2c read\n")); /* zero all the values */ memset (info, 0, sizeof (*info)); if (ret) { DP (printf ("No DIMM in slot %d [err = %x]\n", slot, ret)); return 0; } /* first, do some sanity checks */ if (data[2] != 0x4) { printf ("Not SDRAM in slot %d\n", slot); return 0; } /* get various information */ rows = data[3]; cols = data[4]; info->banks = data[5]; sdram_banks = data[17]; width = data[13] & 0x7f; DP (printf ("sdram_banks: %d, banks: %d\n", sdram_banks, info->banks)); /* check if the memory is registered */ if (data[21] & (BIT1 | BIT4)) info->registered = 1; #ifdef CONFIG_ECC /* check for ECC/parity [0 = none, 1 = parity, 2 = ecc] */ info->ecc = (data[11] & 2) >> 1; #endif /* bit 1 is CL2, bit 2 is CL3 */ supp_cal = (data[18] & 0x6) >> 1; /* compute the relevant clock values */ trp_clocks = (NSto10PS (data[27]) + (tmemclk - 1)) / tmemclk; trcd_clocks = (NSto10PS (data[29]) + (tmemclk - 1)) / tmemclk; info->tras_clocks = (NSto10PS (data[30]) + (tmemclk - 1)) / tmemclk; DP (printf ("trp = %d\ntrcd_clocks = %d\ntras_clocks = %d\n", trp_clocks, trcd_clocks, info->tras_clocks)); /* try a CAS latency of 3 first... */ cal_val = 0; if (supp_cal & 3) { if (NS10to10PS (data[9]) <= tmemclk) cal_val = 3; } /* then 2... */ if (supp_cal & 2) { if (NS10to10PS (data[23]) <= tmemclk) cal_val = 2; } DP (printf ("cal_val = %d\n", cal_val)); /* bummer, did't work... */ if (cal_val == 0) { DP (printf ("Couldn't find a good CAS latency\n")); return 0; } /* get the largest delay -- these values need to all be the same * see Res#6 */ info->tpar = cal_val; if (trp_clocks > info->tpar) info->tpar = trp_clocks; if (trcd_clocks > info->tpar) info->tpar = trcd_clocks; DP (printf ("tpar set to: %d\n", info->tpar)); #ifdef CFG_BROKEN_CL2 if (info->tpar == 2) { info->tpar = 3; DP (printf ("tpar fixed-up to: %d\n", info->tpar)); } #endif /* compute the module DRB size */ info->drb_size = (((1 << (rows + cols)) * sdram_banks) * width) / _16M; DP (printf ("drb_size set to: %d\n", info->drb_size)); /* find the burst len */ info->burst_len = data[16] & 0xf; if ((info->burst_len & 8) == 8) { info->burst_len = 1; } else if ((info->burst_len & 4) == 4) { info->burst_len = 0; } else { return 0; } info->slot = slot; return 0; } #endif /* ! CONFIG_ZUMA_V2 */ static int setup_sdram_common (sdram_info_t info[2]) { ulong tmp; int tpar = 2, tras_clocks = 5, registered = 1, ecc = 2; if (!info[0].banks && !info[1].banks) return 0; if (info[0].banks) { if (info[0].tpar > tpar) tpar = info[0].tpar; if (info[0].tras_clocks > tras_clocks) tras_clocks = info[0].tras_clocks; if (!info[0].registered) registered = 0; if (info[0].ecc != 2) ecc = 0; } if (info[1].banks) { if (info[1].tpar > tpar) tpar = info[1].tpar; if (info[1].tras_clocks > tras_clocks) tras_clocks = info[1].tras_clocks; if (!info[1].registered) registered = 0; if (info[1].ecc != 2) ecc = 0; } /* SDRAM configuration */ tmp = GTREGREAD (SDRAM_CONFIGURATION); /* Turn on physical interleave if both DIMMs * have even numbers of banks. */ if ((info[0].banks == 0 || info[0].banks == 2) && (info[1].banks == 0 || info[1].banks == 2)) { /* physical interleave on */ tmp &= ~(1 << 15); } else { /* physical interleave off */ tmp |= (1 << 15); } tmp |= (registered << 17); /* Use buffer 1 to return read data to the CPU * See Res #12 */ tmp |= (1 << 26); GT_REG_WRITE (SDRAM_CONFIGURATION, tmp); DP (printf ("SDRAM config: %08x\n", GTREGREAD (SDRAM_CONFIGURATION))); /* SDRAM timing */ tmp = (((tpar == 3) ? 2 : 1) | (((tpar == 3) ? 2 : 1) << 2) | (((tpar == 3) ? 2 : 1) << 4) | (tras_clocks << 8)); #ifdef CONFIG_ECC /* Setup ECC */ if (ecc == 2) tmp |= 1 << 13; #endif /* CONFIG_ECC */ GT_REG_WRITE (SDRAM_TIMING, tmp); DP (printf ("SDRAM timing: %08x (%d,%d,%d,%d)\n", GTREGREAD (SDRAM_TIMING), tpar, tpar, tpar, tras_clocks)); /* SDRAM address decode register */ /* program this with the default value */ GT_REG_WRITE (SDRAM_ADDRESS_DECODE, 0x2); DP (printf ("SDRAM decode: %08x\n", GTREGREAD (SDRAM_ADDRESS_DECODE))); return 0; } /* sets up the GT properly with information passed in */ static int setup_sdram (sdram_info_t * info) { ulong tmp, check; ulong *addr = 0; int i; /* sanity checking */ if (!info->banks) return 0; /* ---------------------------- */ /* Program the GT with the discovered data */ /* bank parameters */ tmp = (0xf << 16); /* leave all virt bank pages open */ DP (printf ("drb_size: %d\n", info->drb_size)); switch (info->drb_size) { case 1: tmp |= (1 << 14); break; case 4: case 8: tmp |= (2 << 14); break; case 16: case 32: tmp |= (3 << 14); break; default: printf ("Error in dram size calculation\n"); return 1; } /* SDRAM bank parameters */ /* the param registers for slot 1 (banks 2+3) are offset by 0x8 */ GT_REG_WRITE (SDRAM_BANK0PARAMETERS + (info->slot * 0x8), tmp); GT_REG_WRITE (SDRAM_BANK1PARAMETERS + (info->slot * 0x8), tmp); DP (printf ("SDRAM bankparam slot %d (bank %d+%d): %08lx\n", info->slot, info->slot * 2, (info->slot * 2) + 1, tmp)); /* set the SDRAM configuration for each bank */ for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) { DP (printf ("*** Running a MRS cycle for bank %d ***\n", i)); /* map the bank */ memory_map_bank (i, 0, GB / 4); /* set SDRAM mode */ GT_REG_WRITE (SDRAM_OPERATION_MODE, 0x3); check = GTREGREAD (SDRAM_OPERATION_MODE); /* dummy write */ *addr = 0; /* wait for the command to complete */ while ((GTREGREAD (SDRAM_OPERATION_MODE) & (1 << 31)) == 0); /* switch back to normal operation mode */ GT_REG_WRITE (SDRAM_OPERATION_MODE, 0); check = GTREGREAD (SDRAM_OPERATION_MODE); /* unmap the bank */ memory_map_bank (i, 0, 0); DP (printf ("*** MRS cycle for bank %d done ***\n", i)); } return 0; } /* * Check memory range for valid RAM. A simple memory test determines * the actually available RAM size between addresses `base' and * `base + maxsize'. Some (not all) hardware errors are detected: * - short between address lines * - short between data lines */ static long int dram_size (long int *base, long int maxsize) { volatile long int *addr, *b = base; long int cnt, val, save1, save2; #define STARTVAL (1<<20) /* start test at 1M */ for (cnt = STARTVAL / sizeof (long); cnt < maxsize / sizeof (long); cnt <<= 1) { addr = base + cnt; /* pointer arith! */ save1 = *addr; /* save contents of addr */ save2 = *b; /* save contents of base */ *addr = cnt; /* write cnt to addr */ *b = 0; /* put null at base */ /* check at base address */ if ((*b) != 0) { *addr = save1; /* restore *addr */ *b = save2; /* restore *b */ return (0); } val = *addr; /* read *addr */ *addr = save1; *b = save2; if (val != cnt) { /* fix boundary condition.. STARTVAL means zero */ if (cnt == STARTVAL / sizeof (long)) cnt = 0; return (cnt * sizeof (long)); } } return maxsize; } /* ------------------------------------------------------------------------- */ /* U-Boot interface function to SDRAM init - this is where all the * controlling logic happens */ phys_size_t initdram (int board_type) { ulong checkbank[4] = {[0 ... 3] = 0 }; int bank_no; ulong total; int nhr; sdram_info_t dimm_info[2]; /* first, use the SPD to get info about the SDRAM */ /* check the NHR bit and skip mem init if it's already done */ nhr = get_hid0 () & (1 << 16); if (nhr) { printf ("Skipping SDRAM setup due to NHR bit being set\n"); } else { /* DIMM0 */ check_dimm (0, &dimm_info[0]); /* DIMM1 */ #ifndef CONFIG_EVB64260_750CX /* EVB64260_750CX has only 1 DIMM */ check_dimm (1, &dimm_info[1]); #else /* CONFIG_EVB64260_750CX */ memset (&dimm_info[1], 0, sizeof (sdram_info_t)); #endif /* unmap all banks */ memory_map_bank (0, 0, 0); memory_map_bank (1, 0, 0); memory_map_bank (2, 0, 0); memory_map_bank (3, 0, 0); /* Now, program the GT with the correct values */ if (setup_sdram_common (dimm_info)) { printf ("Setup common failed.\n"); } if (setup_sdram (&dimm_info[0])) { printf ("Setup for DIMM1 failed.\n"); } if (setup_sdram (&dimm_info[1])) { printf ("Setup for DIMM2 failed.\n"); } /* set the NHR bit */ set_hid0 (get_hid0 () | (1 << 16)); } /* next, size the SDRAM banks */ total = 0; if (dimm_info[0].banks > 0) checkbank[0] = 1; if (dimm_info[0].banks > 1) checkbank[1] = 1; if (dimm_info[0].banks > 2) printf ("Error, SPD claims DIMM1 has >2 banks\n"); if (dimm_info[1].banks > 0) checkbank[2] = 1; if (dimm_info[1].banks > 1) checkbank[3] = 1; if (dimm_info[1].banks > 2) printf ("Error, SPD claims DIMM2 has >2 banks\n"); /* Generic dram sizer: works even if we don't have i2c DIMMs, * as long as the timing settings are more or less correct */ /* * pass 1: size all the banks, using first bat (0-256M) * limitation: we only support 256M per bank due to * us only having 1 BAT for all DRAM */ for (bank_no = 0; bank_no < CFG_DRAM_BANKS; bank_no++) { /* skip over banks that are not populated */ if (!checkbank[bank_no]) continue; DP (printf ("checking bank %d\n", bank_no)); memory_map_bank (bank_no, 0, GB / 4); checkbank[bank_no] = dram_size (NULL, GB / 4); memory_map_bank (bank_no, 0, 0); DP (printf ("bank %d %08lx\n", bank_no, checkbank[bank_no])); } /* * pass 2: contiguously map each bank into physical address * space. */ dimm_info[0].banks = dimm_info[1].banks = 0; for (bank_no = 0; bank_no < CFG_DRAM_BANKS; bank_no++) { if (!checkbank[bank_no]) continue; dimm_info[bank_no / 2].banks++; dimm_info[bank_no / 2].size += checkbank[bank_no]; memory_map_bank (bank_no, total, checkbank[bank_no]); #ifdef MAP_PCI memory_map_bank_pci (bank_no, total, checkbank[bank_no]); #endif total += checkbank[bank_no]; } #ifdef CONFIG_ECC #ifdef CONFIG_ZUMA_V2 /* * We always enable ECC when bank 2 and 3 are unpopulated * If we 2 or 3 are populated, we CAN'T support ECC. * (Zuma boards only support ECC in banks 0 and 1; assume that * in that configuration, ECC chips are mounted, even for stacked * chips) */ if (checkbank[2] == 0 && checkbank[3] == 0) { dimm_info[0].ecc = 2; GT_REG_WRITE (SDRAM_TIMING, GTREGREAD (SDRAM_TIMING) | (1 << 13)); /* TODO: do we have to run MRS cycles again? */ } #endif /* CONFIG_ZUMA_V2 */ if (GTREGREAD (SDRAM_TIMING) & (1 << 13)) { puts ("[ECC] "); } #endif /* CONFIG_ECC */ #ifdef DEBUG dump_dimm_info (&dimm_info[0]); dump_dimm_info (&dimm_info[1]); #endif /* TODO: return at MOST 256M? */ /* return total > GB/4 ? GB/4 : total; */ return total; }