// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2009-2011 Freescale Semiconductor, Inc. */ #include <common.h> #include <command.h> #include <netdev.h> #include <asm/mmu.h> #include <asm/processor.h> #include <asm/cache.h> #include <asm/immap_85xx.h> #include <asm/fsl_law.h> #include <fsl_ddr_sdram.h> #include <asm/fsl_serdes.h> #include <asm/fsl_portals.h> #include <asm/fsl_liodn.h> #include <malloc.h> #include <fm_eth.h> #include <fsl_mdio.h> #include <miiphy.h> #include <phy.h> #include "../common/ngpixis.h" #include "../common/fman.h" #include <fsl_dtsec.h> #define EMI_NONE 0xffffffff #define EMI_MASK 0xf0000000 #define EMI1_RGMII 0x0 #define EMI1_SLOT3 0x80000000 /* bank1 EFGH */ #define EMI1_SLOT4 0x40000000 /* bank2 ABCD */ #define EMI1_SLOT5 0xc0000000 /* bank3 ABCD */ #define EMI2_SLOT4 0x10000000 /* bank2 ABCD */ #define EMI2_SLOT5 0x30000000 /* bank3 ABCD */ #define EMI1_MASK 0xc0000000 #define EMI2_MASK 0x30000000 #define PHY_BASE_ADDR 0x00 #define PHY_BASE_ADDR_SLOT5 0x10 static int mdio_mux[NUM_FM_PORTS]; static char *mdio_names[16] = { "P4080DS_MDIO0", "P4080DS_MDIO1", NULL, "P4080DS_MDIO3", "P4080DS_MDIO4", NULL, NULL, NULL, "P4080DS_MDIO8", NULL, NULL, NULL, "P4080DS_MDIO12", NULL, NULL, NULL, }; /* * Mapping of all 18 SERDES lanes to board slots. A value of '0' here means * that the mapping must be determined dynamically, or that the lane maps to * something other than a board slot. */ static u8 lane_to_slot[] = { 1, 1, 2, 2, 3, 3, 3, 3, 6, 6, 4, 4, 4, 4, 5, 5, 5, 5 }; static char *p4080ds_mdio_name_for_muxval(u32 muxval) { return mdio_names[(muxval & EMI_MASK) >> 28]; } struct mii_dev *mii_dev_for_muxval(u32 muxval) { struct mii_dev *bus; char *name = p4080ds_mdio_name_for_muxval(muxval); if (!name) { printf("No bus for muxval %x\n", muxval); return NULL; } bus = miiphy_get_dev_by_name(name); if (!bus) { printf("No bus by name %s\n", name); return NULL; } return bus; } #if defined(CONFIG_SYS_P4080_ERRATUM_SERDES9) && defined(CONFIG_PHY_TERANETICS) int board_phy_config(struct phy_device *phydev) { if (phydev->drv->config) phydev->drv->config(phydev); if (phydev->drv->uid == PHY_UID_TN2020) { unsigned long timeout = 1 * 1000; /* 1 seconds */ enum srds_prtcl device; /* * Wait for the XAUI to come out of reset. This is when it * starts transmitting alignment signals. */ while (--timeout) { int reg = phy_read(phydev, MDIO_MMD_PHYXS, MDIO_CTRL1); if (reg < 0) { printf("TN2020: Error reading from PHY at " "address %u\n", phydev->addr); break; } /* * Note that we've never actually seen * MDIO_CTRL1_RESET set to 1. */ if ((reg & MDIO_CTRL1_RESET) == 0) break; udelay(1000); } if (!timeout) { printf("TN2020: Timeout waiting for PHY at address %u " " to reset.\n", phydev->addr); } switch (phydev->addr) { case CONFIG_SYS_FM1_10GEC1_PHY_ADDR: device = XAUI_FM1; break; case CONFIG_SYS_FM2_10GEC1_PHY_ADDR: device = XAUI_FM2; break; default: device = NONE; } serdes_reset_rx(device); } return 0; } #endif struct p4080ds_mdio { u32 muxval; struct mii_dev *realbus; }; static void p4080ds_mux_mdio(u32 muxval) { ccsr_gpio_t *pgpio = (void *)(CONFIG_SYS_MPC85xx_GPIO_ADDR); uint gpioval = in_be32(&pgpio->gpdat) & ~(EMI_MASK); gpioval |= muxval; out_be32(&pgpio->gpdat, gpioval); } static int p4080ds_mdio_read(struct mii_dev *bus, int addr, int devad, int regnum) { struct p4080ds_mdio *priv = bus->priv; p4080ds_mux_mdio(priv->muxval); return priv->realbus->read(priv->realbus, addr, devad, regnum); } static int p4080ds_mdio_write(struct mii_dev *bus, int addr, int devad, int regnum, u16 value) { struct p4080ds_mdio *priv = bus->priv; p4080ds_mux_mdio(priv->muxval); return priv->realbus->write(priv->realbus, addr, devad, regnum, value); } static int p4080ds_mdio_reset(struct mii_dev *bus) { struct p4080ds_mdio *priv = bus->priv; return priv->realbus->reset(priv->realbus); } static int p4080ds_mdio_init(char *realbusname, u32 muxval) { struct p4080ds_mdio *pmdio; struct mii_dev *bus = mdio_alloc(); if (!bus) { printf("Failed to allocate P4080DS MDIO bus\n"); return -1; } pmdio = malloc(sizeof(*pmdio)); if (!pmdio) { printf("Failed to allocate P4080DS private data\n"); free(bus); return -1; } bus->read = p4080ds_mdio_read; bus->write = p4080ds_mdio_write; bus->reset = p4080ds_mdio_reset; sprintf(bus->name, p4080ds_mdio_name_for_muxval(muxval)); pmdio->realbus = miiphy_get_dev_by_name(realbusname); if (!pmdio->realbus) { printf("No bus with name %s\n", realbusname); free(bus); free(pmdio); return -1; } pmdio->muxval = muxval; bus->priv = pmdio; return mdio_register(bus); } void board_ft_fman_fixup_port(void *blob, char * prop, phys_addr_t pa, enum fm_port port, int offset) { if (mdio_mux[port] == EMI1_RGMII) fdt_set_phy_handle(blob, prop, pa, "phy_rgmii"); if (mdio_mux[port] == EMI1_SLOT3) { int idx = port - FM2_DTSEC1 + 5; char phy[16]; sprintf(phy, "phy%d_slot3", idx); fdt_set_phy_handle(blob, prop, pa, phy); } } void fdt_fixup_board_enet(void *fdt) { int i; /* * P4080DS can be configured in many different ways, supporting a number * of combinations of ethernet devices and phy types. In order to * have just one device tree for all of those configurations, we fix up * the tree here. By default, the device tree configures FM1 and FM2 * for SGMII, and configures XAUI on both 10G interfaces. So we have * a number of different variables to track: * * 1) Whether the device is configured at all. Whichever devices are * not enabled should be disabled by setting the "status" property * to "disabled". * 2) What the PHY interface is. If this is an RGMII connection, * we should change the "phy-connection-type" property to * "rgmii" * 3) Which PHY is being used. Because the MDIO buses are muxed, * we need to redirect the "phy-handle" property to point at the * PHY on the right slot/bus. */ /* We've got six MDIO nodes that may or may not need to exist */ fdt_status_disabled_by_alias(fdt, "emi1_slot3"); fdt_status_disabled_by_alias(fdt, "emi1_slot4"); fdt_status_disabled_by_alias(fdt, "emi1_slot5"); fdt_status_disabled_by_alias(fdt, "emi2_slot4"); fdt_status_disabled_by_alias(fdt, "emi2_slot5"); for (i = 0; i < NUM_FM_PORTS; i++) { switch (mdio_mux[i]) { case EMI1_SLOT3: fdt_status_okay_by_alias(fdt, "emi1_slot3"); break; case EMI1_SLOT4: fdt_status_okay_by_alias(fdt, "emi1_slot4"); break; case EMI1_SLOT5: fdt_status_okay_by_alias(fdt, "emi1_slot5"); break; case EMI2_SLOT4: fdt_status_okay_by_alias(fdt, "emi2_slot4"); break; case EMI2_SLOT5: fdt_status_okay_by_alias(fdt, "emi2_slot5"); break; } } } int board_eth_init(bd_t *bis) { #ifdef CONFIG_FMAN_ENET ccsr_gpio_t *pgpio = (void *)(CONFIG_SYS_MPC85xx_GPIO_ADDR); int i; struct fsl_pq_mdio_info dtsec_mdio_info; struct tgec_mdio_info tgec_mdio_info; struct mii_dev *bus; /* Initialize the mdio_mux array so we can recognize empty elements */ for (i = 0; i < NUM_FM_PORTS; i++) mdio_mux[i] = EMI_NONE; /* The first 4 GPIOs are outputs to control MDIO bus muxing */ out_be32(&pgpio->gpdir, EMI_MASK); dtsec_mdio_info.regs = (struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR; dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME; /* Register the 1G MDIO bus */ fsl_pq_mdio_init(bis, &dtsec_mdio_info); tgec_mdio_info.regs = (struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR; tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME; /* Register the 10G MDIO bus */ fm_tgec_mdio_init(bis, &tgec_mdio_info); /* Register the 6 muxing front-ends to the MDIO buses */ p4080ds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_RGMII); p4080ds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT3); p4080ds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT4); p4080ds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT5); p4080ds_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME, EMI2_SLOT4); p4080ds_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME, EMI2_SLOT5); fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR); fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR); fm_info_set_phy_address(FM1_DTSEC3, CONFIG_SYS_FM1_DTSEC3_PHY_ADDR); fm_info_set_phy_address(FM1_DTSEC4, CONFIG_SYS_FM1_DTSEC4_PHY_ADDR); fm_info_set_phy_address(FM1_10GEC1, CONFIG_SYS_FM1_10GEC1_PHY_ADDR); #if (CONFIG_SYS_NUM_FMAN == 2) fm_info_set_phy_address(FM2_DTSEC1, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR); fm_info_set_phy_address(FM2_DTSEC2, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR); fm_info_set_phy_address(FM2_DTSEC3, CONFIG_SYS_FM2_DTSEC3_PHY_ADDR); fm_info_set_phy_address(FM2_DTSEC4, CONFIG_SYS_FM2_DTSEC4_PHY_ADDR); fm_info_set_phy_address(FM2_10GEC1, CONFIG_SYS_FM2_10GEC1_PHY_ADDR); #endif for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) { int idx = i - FM1_DTSEC1, lane, slot; switch (fm_info_get_enet_if(i)) { case PHY_INTERFACE_MODE_SGMII: lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx); if (lane < 0) break; slot = lane_to_slot[lane]; switch (slot) { case 3: mdio_mux[i] = EMI1_SLOT3; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; case 4: mdio_mux[i] = EMI1_SLOT4; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; case 5: mdio_mux[i] = EMI1_SLOT5; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; }; break; case PHY_INTERFACE_MODE_RGMII: fm_info_set_phy_address(i, 0); mdio_mux[i] = EMI1_RGMII; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; default: break; } } bus = mii_dev_for_muxval(EMI1_SLOT5); set_sgmii_phy(bus, FM1_DTSEC1, CONFIG_SYS_NUM_FM1_DTSEC, PHY_BASE_ADDR_SLOT5); for (i = FM1_10GEC1; i < FM1_10GEC1 + CONFIG_SYS_NUM_FM1_10GEC; i++) { int idx = i - FM1_10GEC1, lane, slot; switch (fm_info_get_enet_if(i)) { case PHY_INTERFACE_MODE_XGMII: lane = serdes_get_first_lane(XAUI_FM1 + idx); if (lane < 0) break; slot = lane_to_slot[lane]; switch (slot) { case 4: mdio_mux[i] = EMI2_SLOT4; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; case 5: mdio_mux[i] = EMI2_SLOT5; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; }; break; default: break; } } #if (CONFIG_SYS_NUM_FMAN == 2) for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) { int idx = i - FM2_DTSEC1, lane, slot; switch (fm_info_get_enet_if(i)) { case PHY_INTERFACE_MODE_SGMII: lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx); if (lane < 0) break; slot = lane_to_slot[lane]; switch (slot) { case 3: mdio_mux[i] = EMI1_SLOT3; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; case 4: mdio_mux[i] = EMI1_SLOT4; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; case 5: mdio_mux[i] = EMI1_SLOT5; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; }; break; case PHY_INTERFACE_MODE_RGMII: fm_info_set_phy_address(i, 0); mdio_mux[i] = EMI1_RGMII; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; default: break; } } bus = mii_dev_for_muxval(EMI1_SLOT3); set_sgmii_phy(bus, FM2_DTSEC1, CONFIG_SYS_NUM_FM2_DTSEC, PHY_BASE_ADDR); bus = mii_dev_for_muxval(EMI1_SLOT4); set_sgmii_phy(bus, FM2_DTSEC1, CONFIG_SYS_NUM_FM2_DTSEC, PHY_BASE_ADDR); for (i = FM2_10GEC1; i < FM2_10GEC1 + CONFIG_SYS_NUM_FM2_10GEC; i++) { int idx = i - FM2_10GEC1, lane, slot; switch (fm_info_get_enet_if(i)) { case PHY_INTERFACE_MODE_XGMII: lane = serdes_get_first_lane(XAUI_FM2 + idx); if (lane < 0) break; slot = lane_to_slot[lane]; switch (slot) { case 4: mdio_mux[i] = EMI2_SLOT4; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; case 5: mdio_mux[i] = EMI2_SLOT5; fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i])); break; }; break; default: break; } } #endif cpu_eth_init(bis); #endif /* CONFIG_FMAN_ENET */ return pci_eth_init(bis); }