// SPDX-License-Identifier: GPL-2.0+ /* * Board functions for Gumstix Pepper and AM335x-based boards * * Copyright (C) 2014, Gumstix, Incorporated - http://www.gumstix.com/ * Based on board/ti/am335x/board.c from Texas Instruments, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "board.h" DECLARE_GLOBAL_DATA_PTR; #ifdef CONFIG_SPL_BUILD #define OSC (V_OSCK/1000000) static const struct ddr_data ddr3_data = { .datardsratio0 = MT41K256M16HA125E_RD_DQS, .datawdsratio0 = MT41K256M16HA125E_WR_DQS, .datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE, .datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA, }; static const struct cmd_control ddr3_cmd_ctrl_data = { .cmd0csratio = MT41K256M16HA125E_RATIO, .cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT, .cmd1csratio = MT41K256M16HA125E_RATIO, .cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT, .cmd2csratio = MT41K256M16HA125E_RATIO, .cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT, }; static struct emif_regs ddr3_emif_reg_data = { .sdram_config = MT41K256M16HA125E_EMIF_SDCFG, .ref_ctrl = MT41K256M16HA125E_EMIF_SDREF, .sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1, .sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2, .sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3, .zq_config = MT41K256M16HA125E_ZQ_CFG, .emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY, }; const struct dpll_params dpll_ddr3 = {400, OSC-1, 1, -1, -1, -1, -1}; const struct ctrl_ioregs ioregs_ddr3 = { .cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE, }; static const struct ddr_data ddr2_data = { .datardsratio0 = MT47H128M16RT25E_RD_DQS, .datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE, .datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA, }; static const struct cmd_control ddr2_cmd_ctrl_data = { .cmd0csratio = MT47H128M16RT25E_RATIO, .cmd1csratio = MT47H128M16RT25E_RATIO, .cmd2csratio = MT47H128M16RT25E_RATIO, }; static const struct emif_regs ddr2_emif_reg_data = { .sdram_config = MT47H128M16RT25E_EMIF_SDCFG, .ref_ctrl = MT47H128M16RT25E_EMIF_SDREF, .sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1, .sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2, .sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3, .emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY, }; const struct dpll_params dpll_ddr2 = {266, OSC-1, 1, -1, -1, -1, -1}; const struct ctrl_ioregs ioregs_ddr2 = { .cm0ioctl = MT47H128M16RT25E_IOCTRL_VALUE, .cm1ioctl = MT47H128M16RT25E_IOCTRL_VALUE, .cm2ioctl = MT47H128M16RT25E_IOCTRL_VALUE, .dt0ioctl = MT47H128M16RT25E_IOCTRL_VALUE, .dt1ioctl = MT47H128M16RT25E_IOCTRL_VALUE, }; static int read_eeprom(struct pepper_board_id *header) { if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) { return -ENODEV; } if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 1, (uchar *)header, sizeof(struct pepper_board_id))) { return -EIO; } return 0; } const struct dpll_params *get_dpll_ddr_params(void) { struct pepper_board_id header; enable_i2c0_pin_mux(); i2c_set_bus_num(0); if (read_eeprom(&header) < 0) return &dpll_ddr3; switch (header.device_vendor) { case GUMSTIX_PEPPER: return &dpll_ddr2; case GUMSTIX_PEPPER_DVI: return &dpll_ddr3; default: return &dpll_ddr3; } } void sdram_init(void) { const struct dpll_params *dpll = get_dpll_ddr_params(); /* * Here we are assuming PLL clock reveals the type of RAM. * DDR2 = 266 * DDR3 = 400 * Note that DDR3 is the default. */ if (dpll->m == 266) { config_ddr(dpll->m, &ioregs_ddr2, &ddr2_data, &ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0); } else if (dpll->m == 400) { config_ddr(dpll->m, &ioregs_ddr3, &ddr3_data, &ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0); } } #ifdef CONFIG_SPL_OS_BOOT int spl_start_uboot(void) { /* break into full u-boot on 'c' */ return serial_tstc() && serial_getc() == 'c'; } #endif void set_uart_mux_conf(void) { enable_uart0_pin_mux(); } void set_mux_conf_regs(void) { enable_board_pin_mux(); } #endif int board_init(void) { #if defined(CONFIG_HW_WATCHDOG) hw_watchdog_init(); #endif gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100; gpmc_init(); return 0; } #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)) static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE; static void cpsw_control(int enabled) { /* VTP can be added here */ return; } static struct cpsw_slave_data cpsw_slaves[] = { { .slave_reg_ofs = 0x208, .sliver_reg_ofs = 0xd80, .phy_addr = 0, .phy_if = PHY_INTERFACE_MODE_RGMII, }, }; static struct cpsw_platform_data cpsw_data = { .mdio_base = CPSW_MDIO_BASE, .cpsw_base = CPSW_BASE, .mdio_div = 0xff, .channels = 8, .cpdma_reg_ofs = 0x800, .slaves = 1, .slave_data = cpsw_slaves, .ale_reg_ofs = 0xd00, .ale_entries = 1024, .host_port_reg_ofs = 0x108, .hw_stats_reg_ofs = 0x900, .bd_ram_ofs = 0x2000, .mac_control = (1 << 5), .control = cpsw_control, .host_port_num = 0, .version = CPSW_CTRL_VERSION_2, }; int board_eth_init(bd_t *bis) { int rv, n = 0; uint8_t mac_addr[6]; uint32_t mac_hi, mac_lo; const char *devname; if (!eth_env_get_enetaddr("ethaddr", mac_addr)) { /* try reading mac address from efuse */ mac_lo = readl(&cdev->macid0l); mac_hi = readl(&cdev->macid0h); mac_addr[0] = mac_hi & 0xFF; mac_addr[1] = (mac_hi & 0xFF00) >> 8; mac_addr[2] = (mac_hi & 0xFF0000) >> 16; mac_addr[3] = (mac_hi & 0xFF000000) >> 24; mac_addr[4] = mac_lo & 0xFF; mac_addr[5] = (mac_lo & 0xFF00) >> 8; if (is_valid_ethaddr(mac_addr)) eth_env_set_enetaddr("ethaddr", mac_addr); } writel((RGMII_MODE_ENABLE | RGMII_INT_DELAY), &cdev->miisel); rv = cpsw_register(&cpsw_data); if (rv < 0) printf("Error %d registering CPSW switch\n", rv); else n += rv; /* * * CPSW RGMII Internal Delay Mode is not supported in all PVT * operating points. So we must set the TX clock delay feature * in the KSZ9021 PHY. Since we only support a single ethernet * device in U-Boot, we only do this for the current instance. */ devname = miiphy_get_current_dev(); /* max rx/tx clock delay, min rx/tx control delay */ miiphy_write(devname, 0x0, 0x0b, 0x8104); miiphy_write(devname, 0x0, 0xc, 0xa0a0); /* min rx data delay */ miiphy_write(devname, 0x0, 0x0b, 0x8105); miiphy_write(devname, 0x0, 0x0c, 0x0000); /* min tx data delay */ miiphy_write(devname, 0x0, 0x0b, 0x8106); miiphy_write(devname, 0x0, 0x0c, 0x0000); return n; } #endif