/* * (C) Copyright 2009 * Marvell Semiconductor * Prafulla Wadaskar * * (C) Copyright 2009 * Stefan Roese, DENX Software Engineering, sr@denx.de. * * (C) Copyright 2010 * Heiko Schocher, DENX Software Engineering, hs@denx.de. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include "../common/common.h" DECLARE_GLOBAL_DATA_PTR; /* * BOCO FPGA definitions */ #define BOCO 0x10 #define REG_CTRL_H 0x02 #define MASK_WRL_UNITRUN 0x01 #define MASK_RBX_PGY_PRESENT 0x40 #define REG_IRQ_CIRQ2 0x2d #define MASK_RBI_DEFECT_16 0x01 /* Multi-Purpose Pins Functionality configuration */ static const u32 kwmpp_config[] = { MPP0_NF_IO2, MPP1_NF_IO3, MPP2_NF_IO4, MPP3_NF_IO5, MPP4_NF_IO6, MPP5_NF_IO7, MPP6_SYSRST_OUTn, MPP7_PEX_RST_OUTn, #if defined(CONFIG_SYS_I2C_SOFT) MPP8_GPIO, /* SDA */ MPP9_GPIO, /* SCL */ #endif #if defined(CONFIG_HARD_I2C) MPP8_TW_SDA, MPP9_TW_SCK, #endif MPP10_UART0_TXD, MPP11_UART0_RXD, MPP12_GPO, /* Reserved */ MPP13_UART1_TXD, MPP14_UART1_RXD, MPP15_GPIO, /* Not used */ MPP16_GPIO, /* Not used */ MPP17_GPIO, /* Reserved */ MPP18_NF_IO0, MPP19_NF_IO1, MPP20_GPIO, MPP21_GPIO, MPP22_GPIO, MPP23_GPIO, MPP24_GPIO, MPP25_GPIO, MPP26_GPIO, MPP27_GPIO, MPP28_GPIO, MPP29_GPIO, MPP30_GPIO, MPP31_GPIO, MPP32_GPIO, MPP33_GPIO, MPP34_GPIO, /* CDL1 (input) */ MPP35_GPIO, /* CDL2 (input) */ MPP36_GPIO, /* MAIN_IRQ (input) */ MPP37_GPIO, /* BOARD_LED */ MPP38_GPIO, /* Piggy3 LED[1] */ MPP39_GPIO, /* Piggy3 LED[2] */ MPP40_GPIO, /* Piggy3 LED[3] */ MPP41_GPIO, /* Piggy3 LED[4] */ MPP42_GPIO, /* Piggy3 LED[5] */ MPP43_GPIO, /* Piggy3 LED[6] */ MPP44_GPIO, /* Piggy3 LED[7], BIST_EN_L */ MPP45_GPIO, /* Piggy3 LED[8] */ MPP46_GPIO, /* Reserved */ MPP47_GPIO, /* Reserved */ MPP48_GPIO, /* Reserved */ MPP49_GPIO, /* SW_INTOUTn */ 0 }; #if defined(CONFIG_KM_MGCOGE3UN) /* * Wait for startup OK from mgcoge3ne */ int startup_allowed(void) { unsigned char buf; /* * Read CIRQ16 bit (bit 0) */ if (i2c_read(BOCO, REG_IRQ_CIRQ2, 1, &buf, 1) != 0) printf("%s: Error reading Boco\n", __func__); else if ((buf & MASK_RBI_DEFECT_16) == MASK_RBI_DEFECT_16) return 1; return 0; } #endif #if (defined(CONFIG_KM_PIGGY4_88E6061)|defined(CONFIG_KM_PIGGY4_88E6352)) /* * All boards with PIGGY4 connected via a simple switch have ethernet always * present. */ int ethernet_present(void) { return 1; } #else int ethernet_present(void) { uchar buf; int ret = 0; if (i2c_read(BOCO, REG_CTRL_H, 1, &buf, 1) != 0) { printf("%s: Error reading Boco\n", __func__); return -1; } if ((buf & MASK_RBX_PGY_PRESENT) == MASK_RBX_PGY_PRESENT) ret = 1; return ret; } #endif static int initialize_unit_leds(void) { /* * Init the unit LEDs per default they all are * ok apart from bootstat */ uchar buf; if (i2c_read(BOCO, REG_CTRL_H, 1, &buf, 1) != 0) { printf("%s: Error reading Boco\n", __func__); return -1; } buf |= MASK_WRL_UNITRUN; if (i2c_write(BOCO, REG_CTRL_H, 1, &buf, 1) != 0) { printf("%s: Error writing Boco\n", __func__); return -1; } return 0; } static void set_bootcount_addr(void) { uchar buf[32]; unsigned int bootcountaddr; bootcountaddr = gd->ram_size - BOOTCOUNT_ADDR; sprintf((char *)buf, "0x%x", bootcountaddr); setenv("bootcountaddr", (char *)buf); } int misc_init_r(void) { #if defined(CONFIG_KM_MGCOGE3UN) char *wait_for_ne; wait_for_ne = getenv("waitforne"); if (wait_for_ne != NULL) { if (strcmp(wait_for_ne, "true") == 0) { int cnt = 0; int abort = 0; puts("NE go: "); while (startup_allowed() == 0) { if (tstc()) { (void) getc(); /* consume input */ abort = 1; break; } udelay(200000); cnt++; if (cnt == 5) puts("wait\b\b\b\b"); if (cnt == 10) { cnt = 0; puts(" \b\b\b\b"); } } if (abort == 1) printf("\nAbort waiting for ne\n"); else puts("OK\n"); } } #endif initialize_unit_leds(); set_km_env(); set_bootcount_addr(); return 0; } int board_early_init_f(void) { #if defined(CONFIG_SYS_I2C_SOFT) u32 tmp; /* set the 2 bitbang i2c pins as output gpios */ tmp = readl(KW_GPIO0_BASE + 4); writel(tmp & (~KM_KIRKWOOD_SOFT_I2C_GPIOS) , KW_GPIO0_BASE + 4); #endif /* adjust SDRAM size for bank 0 */ kw_sdram_size_adjust(0); kirkwood_mpp_conf(kwmpp_config, NULL); return 0; } int board_init(void) { /* address of boot parameters */ gd->bd->bi_boot_params = kw_sdram_bar(0) + 0x100; /* * The KM_FLASH_GPIO_PIN switches between using a * NAND or a SPI FLASH. Set this pin on start * to NAND mode. */ kw_gpio_set_valid(KM_FLASH_GPIO_PIN, 1); kw_gpio_direction_output(KM_FLASH_GPIO_PIN, 1); #if defined(CONFIG_SYS_I2C_SOFT) /* * Reinit the GPIO for I2C Bitbang driver so that the now * available gpio framework is consistent. The calls to * direction output in are not necessary, they are already done in * board_early_init_f */ kw_gpio_set_valid(KM_KIRKWOOD_SDA_PIN, 1); kw_gpio_set_valid(KM_KIRKWOOD_SCL_PIN, 1); #endif #if defined(CONFIG_SYS_EEPROM_WREN) kw_gpio_set_valid(KM_KIRKWOOD_ENV_WP, 38); kw_gpio_direction_output(KM_KIRKWOOD_ENV_WP, 1); #endif #if defined(CONFIG_KM_FPGA_CONFIG) trigger_fpga_config(); #endif return 0; } int board_late_init(void) { #if defined(CONFIG_KMCOGE5UN) /* I/O pin to erase flash RGPP09 = MPP43 */ #define KM_FLASH_ERASE_ENABLE 43 u8 dip_switch = kw_gpio_get_value(KM_FLASH_ERASE_ENABLE); /* if pin 1 do full erase */ if (dip_switch != 0) { /* start bootloader */ puts("DIP: Enabled\n"); setenv("actual_bank", "0"); } #endif #if defined(CONFIG_KM_FPGA_CONFIG) wait_for_fpga_config(); fpga_reset(); toggle_eeprom_spi_bus(); #endif return 0; } int board_spi_claim_bus(struct spi_slave *slave) { kw_gpio_set_value(KM_FLASH_GPIO_PIN, 0); return 0; } void board_spi_release_bus(struct spi_slave *slave) { kw_gpio_set_value(KM_FLASH_GPIO_PIN, 1); } #if (defined(CONFIG_KM_PIGGY4_88E6061)) #define PHY_LED_SEL_REG 0x18 #define PHY_LED0_LINK (0x5) #define PHY_LED1_ACT (0x8<<4) #define PHY_LED2_INT (0xe<<8) #define PHY_SPEC_CTRL_REG 0x1c #define PHY_RGMII_CLK_STABLE (0x1<<10) #define PHY_CLSA (0x1<<1) /* Configure and enable MV88E3018 PHY */ void reset_phy(void) { char *name = "egiga0"; unsigned short reg; if (miiphy_set_current_dev(name)) return; /* RGMII clk transition on data stable */ if (!miiphy_read(name, CONFIG_PHY_BASE_ADR, PHY_SPEC_CTRL_REG, ®)) printf("Error reading PHY spec ctrl reg\n"); if (!miiphy_write(name, CONFIG_PHY_BASE_ADR, PHY_SPEC_CTRL_REG, reg | PHY_RGMII_CLK_STABLE | PHY_CLSA)) printf("Error writing PHY spec ctrl reg\n"); /* leds setup */ if (!miiphy_write(name, CONFIG_PHY_BASE_ADR, PHY_LED_SEL_REG, PHY_LED0_LINK | PHY_LED1_ACT | PHY_LED2_INT)) printf("Error writing PHY LED reg\n"); /* reset the phy */ miiphy_reset(name, CONFIG_PHY_BASE_ADR); } #elif defined(CONFIG_KM_PIGGY4_88E6352) #include #if defined(CONFIG_KM_NUSA) struct mv88e_sw_reg extsw_conf[] = { /* * port 0, PIGGY4, autoneg * first the fix for the 1000Mbits Autoneg, this is from * a Marvell errata, the regs are undocumented */ { PHY(0), PHY_PAGE, AN1000FIX_PAGE }, { PHY(0), PHY_STATUS, AN1000FIX }, { PHY(0), PHY_PAGE, 0 }, /* now the real port and phy configuration */ { PORT(0), PORT_PHY, NO_SPEED_FOR }, { PORT(0), PORT_CTRL, FORWARDING | EGRS_FLD_ALL }, { PHY(0), PHY_1000_CTRL, NO_ADV }, { PHY(0), PHY_SPEC_CTRL, AUTO_MDIX_EN }, { PHY(0), PHY_CTRL, PHY_100_MBPS | AUTONEG_EN | AUTONEG_RST | FULL_DUPLEX }, /* port 1, unused */ { PORT(1), PORT_CTRL, PORT_DIS }, { PHY(1), PHY_CTRL, PHY_PWR_DOWN }, { PHY(1), PHY_SPEC_CTRL, SPEC_PWR_DOWN }, /* port 2, unused */ { PORT(2), PORT_CTRL, PORT_DIS }, { PHY(2), PHY_CTRL, PHY_PWR_DOWN }, { PHY(2), PHY_SPEC_CTRL, SPEC_PWR_DOWN }, /* port 3, unused */ { PORT(3), PORT_CTRL, PORT_DIS }, { PHY(3), PHY_CTRL, PHY_PWR_DOWN }, { PHY(3), PHY_SPEC_CTRL, SPEC_PWR_DOWN }, /* port 4, ICNEV, SerDes, SGMII */ { PORT(4), PORT_STATUS, NO_PHY_DETECT }, { PORT(4), PORT_PHY, SPEED_1000_FOR }, { PORT(4), PORT_CTRL, FORWARDING | EGRS_FLD_ALL }, { PHY(4), PHY_CTRL, PHY_PWR_DOWN }, { PHY(4), PHY_SPEC_CTRL, SPEC_PWR_DOWN }, /* port 5, CPU_RGMII */ { PORT(5), PORT_PHY, RX_RGMII_TIM | TX_RGMII_TIM | FLOW_CTRL_EN | FLOW_CTRL_FOR | LINK_VAL | LINK_FOR | FULL_DPX | FULL_DPX_FOR | SPEED_1000_FOR }, { PORT(5), PORT_CTRL, FORWARDING | EGRS_FLD_ALL }, /* port 6, unused, this port has no phy */ { PORT(6), PORT_CTRL, PORT_DIS }, }; #else struct mv88e_sw_reg extsw_conf[] = {}; #endif void reset_phy(void) { #if defined(CONFIG_KM_MVEXTSW_ADDR) char *name = "egiga0"; if (miiphy_set_current_dev(name)) return; mv88e_sw_program(name, CONFIG_KM_MVEXTSW_ADDR, extsw_conf, ARRAY_SIZE(extsw_conf)); mv88e_sw_reset(name, CONFIG_KM_MVEXTSW_ADDR); #endif } #else /* Configure and enable MV88E1118 PHY on the piggy*/ void reset_phy(void) { char *name = "egiga0"; if (miiphy_set_current_dev(name)) return; /* reset the phy */ miiphy_reset(name, CONFIG_PHY_BASE_ADR); } #endif #if defined(CONFIG_HUSH_INIT_VAR) int hush_init_var(void) { ivm_read_eeprom(); return 0; } #endif #if defined(CONFIG_SYS_I2C_SOFT) void set_sda(int state) { I2C_ACTIVE; I2C_SDA(state); } void set_scl(int state) { I2C_SCL(state); } int get_sda(void) { I2C_TRISTATE; return I2C_READ; } int get_scl(void) { return kw_gpio_get_value(KM_KIRKWOOD_SCL_PIN) ? 1 : 0; } #endif #if defined(CONFIG_POST) #define KM_POST_EN_L 44 #define POST_WORD_OFF 8 int post_hotkeys_pressed(void) { #if defined(CONFIG_KM_COGE5UN) return kw_gpio_get_value(KM_POST_EN_L); #else return !kw_gpio_get_value(KM_POST_EN_L); #endif } ulong post_word_load(void) { void* addr = (void *) (gd->ram_size - BOOTCOUNT_ADDR + POST_WORD_OFF); return in_le32(addr); } void post_word_store(ulong value) { void* addr = (void *) (gd->ram_size - BOOTCOUNT_ADDR + POST_WORD_OFF); out_le32(addr, value); } int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset) { *vstart = CONFIG_SYS_SDRAM_BASE; /* we go up to relocation plus a 1 MB margin */ *size = CONFIG_SYS_TEXT_BASE - (1<<20); return 0; } #endif #if defined(CONFIG_SYS_EEPROM_WREN) int eeprom_write_enable(unsigned dev_addr, int state) { kw_gpio_set_value(KM_KIRKWOOD_ENV_WP, !state); return !kw_gpio_get_value(KM_KIRKWOOD_ENV_WP); } #endif