/* * (C) Copyright 2009 * Marvell Semiconductor * Prafulla Wadaskar * * (C) Copyright 2009 * Stefan Roese, DENX Software Engineering, sr@denx.de. * * (C) Copyright 2010 * Heiko Schocher, DENX Software Engineering, hs@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include "../common/common.h" DECLARE_GLOBAL_DATA_PTR; /* * BOCO FPGA definitions */ #define BOCO 0x10 #define REG_CTRL_H 0x02 #define MASK_WRL_UNITRUN 0x01 #define MASK_RBX_PGY_PRESENT 0x40 #define REG_IRQ_CIRQ2 0x2d #define MASK_RBI_DEFECT_16 0x01 /* Multi-Purpose Pins Functionality configuration */ u32 kwmpp_config[] = { MPP0_NF_IO2, MPP1_NF_IO3, MPP2_NF_IO4, MPP3_NF_IO5, MPP4_NF_IO6, MPP5_NF_IO7, MPP6_SYSRST_OUTn, MPP7_PEX_RST_OUTn, #if defined(CONFIG_SOFT_I2C) MPP8_GPIO, /* SDA */ MPP9_GPIO, /* SCL */ #endif #if defined(CONFIG_HARD_I2C) MPP8_TW_SDA, MPP9_TW_SCK, #endif MPP10_UART0_TXD, MPP11_UART0_RXD, MPP12_GPO, /* Reserved */ MPP13_UART1_TXD, MPP14_UART1_RXD, MPP15_GPIO, /* Not used */ MPP16_GPIO, /* Not used */ MPP17_GPIO, /* Reserved */ MPP18_NF_IO0, MPP19_NF_IO1, MPP20_GPIO, MPP21_GPIO, MPP22_GPIO, MPP23_GPIO, MPP24_GPIO, MPP25_GPIO, MPP26_GPIO, MPP27_GPIO, MPP28_GPIO, MPP29_GPIO, MPP30_GPIO, MPP31_GPIO, MPP32_GPIO, MPP33_GPIO, MPP34_GPIO, /* CDL1 (input) */ MPP35_GPIO, /* CDL2 (input) */ MPP36_GPIO, /* MAIN_IRQ (input) */ MPP37_GPIO, /* BOARD_LED */ MPP38_GPIO, /* Piggy3 LED[1] */ MPP39_GPIO, /* Piggy3 LED[2] */ MPP40_GPIO, /* Piggy3 LED[3] */ MPP41_GPIO, /* Piggy3 LED[4] */ MPP42_GPIO, /* Piggy3 LED[5] */ MPP43_GPIO, /* Piggy3 LED[6] */ MPP44_GPIO, /* Piggy3 LED[7], BIST_EN_L */ MPP45_GPIO, /* Piggy3 LED[8] */ MPP46_GPIO, /* Reserved */ MPP47_GPIO, /* Reserved */ MPP48_GPIO, /* Reserved */ MPP49_GPIO, /* SW_INTOUTn */ 0 }; #if defined(CONFIG_KM_MGCOGE3UN) /* * Wait for startup OK from mgcoge3ne */ int startup_allowed(void) { unsigned char buf; /* * Read CIRQ16 bit (bit 0) */ if (i2c_read(BOCO, REG_IRQ_CIRQ2, 1, &buf, 1) != 0) printf("%s: Error reading Boco\n", __func__); else if ((buf & MASK_RBI_DEFECT_16) == MASK_RBI_DEFECT_16) return 1; return 0; } #endif #if (defined(CONFIG_KM_PIGGY4_88E6061)|defined(CONFIG_KM_PIGGY4_88E6352)) /* * All boards with PIGGY4 connected via a simple switch have ethernet always * present. */ int ethernet_present(void) { return 1; } #else int ethernet_present(void) { uchar buf; int ret = 0; if (i2c_read(BOCO, REG_CTRL_H, 1, &buf, 1) != 0) { printf("%s: Error reading Boco\n", __func__); return -1; } if ((buf & MASK_RBX_PGY_PRESENT) == MASK_RBX_PGY_PRESENT) ret = 1; return ret; } #endif int initialize_unit_leds(void) { /* * Init the unit LEDs per default they all are * ok apart from bootstat */ uchar buf; if (i2c_read(BOCO, REG_CTRL_H, 1, &buf, 1) != 0) { printf("%s: Error reading Boco\n", __func__); return -1; } buf |= MASK_WRL_UNITRUN; if (i2c_write(BOCO, REG_CTRL_H, 1, &buf, 1) != 0) { printf("%s: Error writing Boco\n", __func__); return -1; } return 0; } #if defined(CONFIG_BOOTCOUNT_LIMIT) void set_bootcount_addr(void) { uchar buf[32]; unsigned int bootcountaddr; bootcountaddr = gd->ram_size - BOOTCOUNT_ADDR; sprintf((char *)buf, "0x%x", bootcountaddr); setenv("bootcountaddr", (char *)buf); } #endif int misc_init_r(void) { char *str; int mach_type; str = getenv("mach_type"); if (str != NULL) { mach_type = simple_strtoul(str, NULL, 10); printf("Overwriting MACH_TYPE with %d!!!\n", mach_type); gd->bd->bi_arch_number = mach_type; } #if defined(CONFIG_KM_MGCOGE3UN) char *wait_for_ne; wait_for_ne = getenv("waitforne"); if (wait_for_ne != NULL) { if (strcmp(wait_for_ne, "true") == 0) { int cnt = 0; int abort = 0; puts("NE go: "); while (startup_allowed() == 0) { if (tstc()) { (void) getc(); /* consume input */ abort = 1; break; } udelay(200000); cnt++; if (cnt == 5) puts("wait\b\b\b\b"); if (cnt == 10) { cnt = 0; puts(" \b\b\b\b"); } } if (abort == 1) printf("\nAbort waiting for ne\n"); else puts("OK\n"); } } #endif initialize_unit_leds(); set_km_env(); #if defined(CONFIG_BOOTCOUNT_LIMIT) set_bootcount_addr(); #endif return 0; } int board_early_init_f(void) { u32 tmp; kirkwood_mpp_conf(kwmpp_config, NULL); /* * The FLASH_GPIO_PIN switches between using a * NAND or a SPI FLASH. Set this pin on start * to NAND mode. */ tmp = readl(KW_GPIO0_BASE); writel(tmp | FLASH_GPIO_PIN , KW_GPIO0_BASE); tmp = readl(KW_GPIO0_BASE + 4); writel(tmp & (~FLASH_GPIO_PIN) , KW_GPIO0_BASE + 4); #if defined(CONFIG_SOFT_I2C) /* init the GPIO for I2C Bitbang driver */ kw_gpio_set_valid(KM_KIRKWOOD_SDA_PIN, 1); kw_gpio_set_valid(KM_KIRKWOOD_SCL_PIN, 1); kw_gpio_direction_output(KM_KIRKWOOD_SDA_PIN, 0); kw_gpio_direction_output(KM_KIRKWOOD_SCL_PIN, 0); #endif #if defined(CONFIG_SYS_EEPROM_WREN) kw_gpio_set_valid(KM_KIRKWOOD_ENV_WP, 38); kw_gpio_direction_output(KM_KIRKWOOD_ENV_WP, 1); #endif return 0; } int board_init(void) { /* address of boot parameters */ gd->bd->bi_boot_params = kw_sdram_bar(0) + 0x100; #if defined(CONFIG_KM_FPGA_CONFIG) trigger_fpga_config(); #endif return 0; } int board_late_init(void) { #if defined(CONFIG_KM_FPGA_CONFIG) wait_for_fpga_config(); fpga_reset(); toggle_eeprom_spi_bus(); #endif return 0; } int board_spi_claim_bus(struct spi_slave *slave) { kw_gpio_set_value(KM_FLASH_GPIO_PIN, 0); return 0; } void board_spi_release_bus(struct spi_slave *slave) { kw_gpio_set_value(KM_FLASH_GPIO_PIN, 1); } int dram_init(void) { /* dram_init must store complete ramsize in gd->ram_size */ /* Fix this */ gd->ram_size = get_ram_size((void *)kw_sdram_bar(0), kw_sdram_bs(0)); return 0; } void dram_init_banksize(void) { int i; for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { gd->bd->bi_dram[i].start = kw_sdram_bar(i); gd->bd->bi_dram[i].size = get_ram_size((long *)kw_sdram_bar(i), kw_sdram_bs(i)); } } #if (defined(CONFIG_KM_PIGGY4_88E6061)) #define PHY_LED_SEL_REG 0x18 #define PHY_LED0_LINK (0x5) #define PHY_LED1_ACT (0x8<<4) #define PHY_LED2_INT (0xe<<8) #define PHY_SPEC_CTRL_REG 0x1c #define PHY_RGMII_CLK_STABLE (0x1<<10) #define PHY_CLSA (0x1<<1) /* Configure and enable MV88E3018 PHY */ void reset_phy(void) { char *name = "egiga0"; unsigned short reg; if (miiphy_set_current_dev(name)) return; /* RGMII clk transition on data stable */ if (!miiphy_read(name, CONFIG_PHY_BASE_ADR, PHY_SPEC_CTRL_REG, ®)) printf("Error reading PHY spec ctrl reg\n"); if (!miiphy_write(name, CONFIG_PHY_BASE_ADR, PHY_SPEC_CTRL_REG, reg | PHY_RGMII_CLK_STABLE | PHY_CLSA)) printf("Error writing PHY spec ctrl reg\n"); /* leds setup */ if (!miiphy_write(name, CONFIG_PHY_BASE_ADR, PHY_LED_SEL_REG, PHY_LED0_LINK | PHY_LED1_ACT | PHY_LED2_INT)) printf("Error writing PHY LED reg\n"); /* reset the phy */ miiphy_reset(name, CONFIG_PHY_BASE_ADR); } #else /* Configure and enable MV88E1118 PHY on the piggy*/ void reset_phy(void) { char *name = "egiga0"; if (miiphy_set_current_dev(name)) return; /* reset the phy */ miiphy_reset(name, CONFIG_PHY_BASE_ADR); } #endif #if defined(CONFIG_HUSH_INIT_VAR) int hush_init_var(void) { ivm_read_eeprom(); return 0; } #endif #if defined(CONFIG_BOOTCOUNT_LIMIT) const ulong patterns[] = { 0x00000000, 0xFFFFFFFF, 0xFF00FF00, 0x0F0F0F0F, 0xF0F0F0F0}; const ulong NBR_OF_PATTERNS = ARRAY_SIZE(patterns); const ulong OFFS_PATTERN = 3; const ulong REPEAT_PATTERN = 1000; void bootcount_store(ulong a) { ulong *save_addr; ulong size = 0; int i; for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) size += gd->bd->bi_dram[i].size; save_addr = (ulong *)(size - BOOTCOUNT_ADDR); writel(a, save_addr); writel(BOOTCOUNT_MAGIC, &save_addr[1]); for (i = 0; i < REPEAT_PATTERN; i++) writel(patterns[i % NBR_OF_PATTERNS], &save_addr[i+OFFS_PATTERN]); } ulong bootcount_load(void) { ulong *save_addr; ulong size = 0; ulong counter = 0; int i, tmp; for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) size += gd->bd->bi_dram[i].size; save_addr = (ulong *)(size - BOOTCOUNT_ADDR); counter = readl(&save_addr[0]); /* Is the counter reliable, check in the big pattern for bit errors */ for (i = 0; (i < REPEAT_PATTERN) && (counter != 0); i++) { tmp = readl(&save_addr[i+OFFS_PATTERN]); if (tmp != patterns[i % NBR_OF_PATTERNS]) counter = 0; } return counter; } #endif #if defined(CONFIG_SOFT_I2C) void set_sda(int state) { I2C_ACTIVE; I2C_SDA(state); } void set_scl(int state) { I2C_SCL(state); } int get_sda(void) { I2C_TRISTATE; return I2C_READ; } int get_scl(void) { return kw_gpio_get_value(KM_KIRKWOOD_SCL_PIN) ? 1 : 0; } #endif #if defined(CONFIG_POST) #define KM_POST_EN_L 44 #define POST_WORD_OFF 8 int post_hotkeys_pressed(void) { #if defined(CONFIG_KM_COGE5UN) return kw_gpio_get_value(KM_POST_EN_L); #else return !kw_gpio_get_value(KM_POST_EN_L); #endif } ulong post_word_load(void) { void* addr = (void *) (gd->ram_size - BOOTCOUNT_ADDR + POST_WORD_OFF); return in_le32(addr); } void post_word_store(ulong value) { void* addr = (void *) (gd->ram_size - BOOTCOUNT_ADDR + POST_WORD_OFF); out_le32(addr, value); } int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset) { *vstart = CONFIG_SYS_SDRAM_BASE; /* we go up to relocation plus a 1 MB margin */ *size = CONFIG_SYS_TEXT_BASE - (1<<20); return 0; } #endif #if defined(CONFIG_SYS_EEPROM_WREN) int eeprom_write_enable(unsigned dev_addr, int state) { kw_gpio_set_value(KM_KIRKWOOD_ENV_WP, !state); return !kw_gpio_get_value(KM_KIRKWOOD_ENV_WP); } #endif