/* * (C) Copyright 2006 * Stefan Roese, DENX Software Engineering, sr@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #if defined(CONFIG_CMD_NAND) #include <nand.h> struct pdnb3_ndfc_regs { uchar cmd; uchar wait; uchar addr; uchar term; uchar data; }; static u8 hwctl; static struct pdnb3_ndfc_regs *pdnb3_ndfc; #define readb(addr) *(volatile u_char *)(addr) #define readl(addr) *(volatile u_long *)(addr) #define writeb(d,addr) *(volatile u_char *)(addr) = (d) /* * The PDNB3 has a NAND Flash Controller (NDFC) that handles all accesses to * the NAND devices. The NDFC has command, address and data registers that * when accessed will set up the NAND flash pins appropriately. We'll use the * hwcontrol function to save the configuration in a global variable. * We can then use this information in the read and write functions to * determine which NDFC register to access. * * There is one NAND devices on the board, a Hynix HY27US08561A (32 MByte). */ static void pdnb3_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *this = mtd->priv; if (ctrl & NAND_CTRL_CHANGE) { if ( ctrl & NAND_CLE ) hwctl |= 0x1; else hwctl &= ~0x1; if ( ctrl & NAND_ALE ) hwctl |= 0x2; else hwctl &= ~0x2; if ( (ctrl & NAND_NCE) != NAND_NCE) writeb(0x00, &(pdnb3_ndfc->term)); } if (cmd != NAND_CMD_NONE) writeb(cmd, this->IO_ADDR_W); } static u_char pdnb3_nand_read_byte(struct mtd_info *mtd) { return readb(&(pdnb3_ndfc->data)); } static void pdnb3_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { int i; for (i = 0; i < len; i++) { if (hwctl & 0x1) writeb(buf[i], &(pdnb3_ndfc->cmd)); else if (hwctl & 0x2) writeb(buf[i], &(pdnb3_ndfc->addr)); else writeb(buf[i], &(pdnb3_ndfc->data)); } } static void pdnb3_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { int i; if (len % 4) { for (i = 0; i < len; i++) buf[i] = readb(&(pdnb3_ndfc->data)); } else { ulong *ptr = (ulong *)buf; int count = len >> 2; for (i = 0; i < count; i++) *ptr++ = readl(&(pdnb3_ndfc->data)); } } static int pdnb3_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { int i; for (i = 0; i < len; i++) if (buf[i] != readb(&(pdnb3_ndfc->data))) return i; return 0; } static int pdnb3_nand_dev_ready(struct mtd_info *mtd) { volatile u_char val; /* * Blocking read to wait for NAND to be ready */ val = readb(&(pdnb3_ndfc->wait)); /* * Return always true */ return 1; } int board_nand_init(struct nand_chip *nand) { pdnb3_ndfc = (struct pdnb3_ndfc_regs *)CONFIG_SYS_NAND_BASE; nand->ecc.mode = NAND_ECC_SOFT; /* Set address of NAND IO lines (Using Linear Data Access Region) */ nand->IO_ADDR_R = (void __iomem *) ((ulong) pdnb3_ndfc + 0x4); nand->IO_ADDR_W = (void __iomem *) ((ulong) pdnb3_ndfc + 0x4); /* Reference hardware control function */ nand->cmd_ctrl = pdnb3_nand_hwcontrol; nand->read_byte = pdnb3_nand_read_byte; nand->write_buf = pdnb3_nand_write_buf; nand->read_buf = pdnb3_nand_read_buf; nand->verify_buf = pdnb3_nand_verify_buf; nand->dev_ready = pdnb3_nand_dev_ready; return 0; } #endif