/* * (C) Copyright 2002 * Sysgo Real-Time Solutions, GmbH <www.elinos.com> * Alex Zuepke <azu@sysgo.de> * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> ulong myflush(void); #define FLASH_BANK_SIZE 0x400000 /* 4 MB */ #define MAIN_SECT_SIZE 0x20000 /* 128 KB */ flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; #define CMD_READ_ARRAY 0x00F000F0 #define CMD_UNLOCK1 0x00AA00AA #define CMD_UNLOCK2 0x00550055 #define CMD_ERASE_SETUP 0x00800080 #define CMD_ERASE_CONFIRM 0x00300030 #define CMD_PROGRAM 0x00A000A0 #define CMD_UNLOCK_BYPASS 0x00200020 #define MEM_FLASH_ADDR1 (*(volatile u32 *)(CFG_FLASH_BASE + (0x00000555 << 2))) #define MEM_FLASH_ADDR2 (*(volatile u32 *)(CFG_FLASH_BASE + (0x000002AA << 2))) #define BIT_ERASE_DONE 0x00800080 #define BIT_RDY_MASK 0x00800080 #define BIT_PROGRAM_ERROR 0x00200020 #define BIT_TIMEOUT 0x80000000 /* our flag */ #define READY 1 #define ERR 2 #define TMO 4 /*----------------------------------------------------------------------- */ ulong flash_init(void) { int i, j; ulong size = 0; for (i = 0; i < CFG_MAX_FLASH_BANKS; i++) { ulong flashbase = 0; flash_info[i].flash_id = (AMD_MANUFACT & FLASH_VENDMASK) | (AMD_ID_LV160B & FLASH_TYPEMASK); flash_info[i].size = FLASH_BANK_SIZE; flash_info[i].sector_count = CFG_MAX_FLASH_SECT; memset(flash_info[i].protect, 0, CFG_MAX_FLASH_SECT); if (i == 0) flashbase = PHYS_FLASH_1; else panic("configured too many flash banks!\n"); for (j = 0; j < flash_info[i].sector_count; j++) { if (j <= 3) { /* 1st one is 32 KB */ if (j == 0) { flash_info[i].start[j] = flashbase + 0; } /* 2nd and 3rd are both 16 KB */ if ((j == 1) || (j == 2)) { flash_info[i].start[j] = flashbase + 0x8000 + (j-1)*0x4000; } /* 4th 64 KB */ if (j == 3) { flash_info[i].start[j] = flashbase + 0x10000; } } else { flash_info[i].start[j] = flashbase + (j - 3)*MAIN_SECT_SIZE; } } size += flash_info[i].size; } /* * Protect monitor and environment sectors * Inferno is complicated, it's hardware locked */ #ifdef CONFIG_INFERNO /* first one, 0x00000 to 0x07fff */ flash_protect(FLAG_PROTECT_SET, CFG_FLASH_BASE + 0x00000, CFG_FLASH_BASE + 0x08000 - 1, &flash_info[0]); /* third to 10th, 0x0c000 - 0xdffff */ flash_protect(FLAG_PROTECT_SET, CFG_FLASH_BASE + 0x0c000, CFG_FLASH_BASE + 0xe0000 - 1, &flash_info[0]); #else flash_protect(FLAG_PROTECT_SET, CFG_FLASH_BASE, CFG_FLASH_BASE + monitor_flash_len - 1, &flash_info[0]); flash_protect(FLAG_PROTECT_SET, CFG_ENV_ADDR, CFG_ENV_ADDR + CFG_ENV_SIZE - 1, &flash_info[0]); #endif return size; } /*----------------------------------------------------------------------- */ void flash_print_info (flash_info_t *info) { int i; switch (info->flash_id & FLASH_VENDMASK) { case (AMD_MANUFACT & FLASH_VENDMASK): printf("AMD: "); break; default: printf("Unknown Vendor "); break; } switch (info->flash_id & FLASH_TYPEMASK) { case (AMD_ID_LV160B & FLASH_TYPEMASK): printf("2x Amd29F160BB (16Mbit)\n"); break; default: printf("Unknown Chip Type\n"); goto Done; break; } printf(" Size: %ld MB in %d Sectors\n", info->size >> 20, info->sector_count); printf(" Sector Start Addresses:"); for (i = 0; i < info->sector_count; i++) { if ((i % 5) == 0) { printf ("\n "); } printf (" %08lX%s", info->start[i], info->protect[i] ? " (RO)" : " "); } printf ("\n"); Done: ; } /*----------------------------------------------------------------------- */ int flash_erase (flash_info_t *info, int s_first, int s_last) { ulong result; int iflag, cflag, prot, sect; int rc = ERR_OK; int chip1, chip2; /* first look for protection bits */ if (info->flash_id == FLASH_UNKNOWN) return ERR_UNKNOWN_FLASH_TYPE; if ((s_first < 0) || (s_first > s_last)) { return ERR_INVAL; } if ((info->flash_id & FLASH_VENDMASK) != (AMD_MANUFACT & FLASH_VENDMASK)) { return ERR_UNKNOWN_FLASH_VENDOR; } prot = 0; for (sect=s_first; sect<=s_last; ++sect) { if (info->protect[sect]) { prot++; } } if (prot) return ERR_PROTECTED; /* * Disable interrupts which might cause a timeout * here. Remember that our exception vectors are * at address 0 in the flash, and we don't want a * (ticker) exception to happen while the flash * chip is in programming mode. */ cflag = icache_status(); icache_disable(); iflag = disable_interrupts(); /* Start erase on unprotected sectors */ for (sect = s_first; sect<=s_last && !ctrlc(); sect++) { printf("Erasing sector %2d ... ", sect); /* arm simple, non interrupt dependent timer */ reset_timer_masked(); if (info->protect[sect] == 0) { /* not protected */ vu_long *addr = (vu_long *)(info->start[sect]); MEM_FLASH_ADDR1 = CMD_UNLOCK1; MEM_FLASH_ADDR2 = CMD_UNLOCK2; MEM_FLASH_ADDR1 = CMD_ERASE_SETUP; MEM_FLASH_ADDR1 = CMD_UNLOCK1; MEM_FLASH_ADDR2 = CMD_UNLOCK2; *addr = CMD_ERASE_CONFIRM; /* wait until flash is ready */ chip1 = chip2 = 0; do { result = *addr; /* check timeout */ if (get_timer_masked() > CFG_FLASH_ERASE_TOUT) { MEM_FLASH_ADDR1 = CMD_READ_ARRAY; chip1 = TMO; break; } if (!chip1 && (result & 0xFFFF) & BIT_ERASE_DONE) chip1 = READY; if (!chip1 && (result & 0xFFFF) & BIT_PROGRAM_ERROR) chip1 = ERR; if (!chip2 && (result >> 16) & BIT_ERASE_DONE) chip2 = READY; if (!chip2 && (result >> 16) & BIT_PROGRAM_ERROR) chip2 = ERR; } while (!chip1 || !chip2); MEM_FLASH_ADDR1 = CMD_READ_ARRAY; if (chip1 == ERR || chip2 == ERR) { rc = ERR_PROG_ERROR; goto outahere; } if (chip1 == TMO) { rc = ERR_TIMOUT; goto outahere; } printf("ok.\n"); } else /* it was protected */ { printf("protected!\n"); } } if (ctrlc()) printf("User Interrupt!\n"); outahere: /* allow flash to settle - wait 10 ms */ udelay_masked(10000); if (iflag) enable_interrupts(); if (cflag) icache_enable(); return rc; } /*----------------------------------------------------------------------- * Copy memory to flash */ static int write_word (flash_info_t *info, ulong dest, ulong data) { vu_long *addr = (vu_long *)dest; ulong result; int rc = ERR_OK; int cflag, iflag; int chip1, chip2; /* * Check if Flash is (sufficiently) erased */ result = *addr; if ((result & data) != data) return ERR_NOT_ERASED; /* * Disable interrupts which might cause a timeout * here. Remember that our exception vectors are * at address 0 in the flash, and we don't want a * (ticker) exception to happen while the flash * chip is in programming mode. */ cflag = icache_status(); icache_disable(); iflag = disable_interrupts(); MEM_FLASH_ADDR1 = CMD_UNLOCK1; MEM_FLASH_ADDR2 = CMD_UNLOCK2; MEM_FLASH_ADDR1 = CMD_UNLOCK_BYPASS; *addr = CMD_PROGRAM; *addr = data; /* arm simple, non interrupt dependent timer */ reset_timer_masked(); /* wait until flash is ready */ chip1 = chip2 = 0; do { result = *addr; /* check timeout */ if (get_timer_masked() > CFG_FLASH_ERASE_TOUT) { chip1 = ERR | TMO; break; } if (!chip1 && ((result & 0x80) == (data & 0x80))) chip1 = READY; if (!chip1 && ((result & 0xFFFF) & BIT_PROGRAM_ERROR)) { result = *addr; if ((result & 0x80) == (data & 0x80)) chip1 = READY; else chip1 = ERR; } if (!chip2 && ((result & (0x80 << 16)) == (data & (0x80 << 16)))) chip2 = READY; if (!chip2 && ((result >> 16) & BIT_PROGRAM_ERROR)) { result = *addr; if ((result & (0x80 << 16)) == (data & (0x80 << 16))) chip2 = READY; else chip2 = ERR; } } while (!chip1 || !chip2); *addr = CMD_READ_ARRAY; if (chip1 == ERR || chip2 == ERR || *addr != data) rc = ERR_PROG_ERROR; if (iflag) enable_interrupts(); if (cflag) icache_enable(); return rc; } /*----------------------------------------------------------------------- * Copy memory to flash. */ int write_buff (flash_info_t *info, uchar *src, ulong addr, ulong cnt) { ulong cp, wp, data; int l; int i, rc; wp = (addr & ~3); /* get lower word aligned address */ /* * handle unaligned start bytes */ if ((l = addr - wp) != 0) { data = 0; for (i=0, cp=wp; i<l; ++i, ++cp) { data = (data >> 8) | (*(uchar *)cp << 24); } for (; i<4 && cnt>0; ++i) { data = (data >> 8) | (*src++ << 24); --cnt; ++cp; } for (; cnt==0 && i<4; ++i, ++cp) { data = (data >> 8) | (*(uchar *)cp << 24); } if ((rc = write_word(info, wp, data)) != 0) { return (rc); } wp += 4; } /* * handle word aligned part */ while (cnt >= 4) { data = *((vu_long*)src); if ((rc = write_word(info, wp, data)) != 0) { return (rc); } src += 4; wp += 4; cnt -= 4; } if (cnt == 0) { return ERR_OK; } /* * handle unaligned tail bytes */ data = 0; for (i=0, cp=wp; i<4 && cnt>0; ++i, ++cp) { data = (data >> 8) | (*src++ << 24); --cnt; } for (; i<4; ++i, ++cp) { data = (data >> 8) | (*(uchar *)cp << 24); } return write_word(info, wp, data); }