// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * Copyright (C) 2018, STMicroelectronics - All Rights Reserved */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* SYSCFG registers */ #define SYSCFG_BOOTR 0x00 #define SYSCFG_PMCSETR 0x04 #define SYSCFG_IOCTRLSETR 0x18 #define SYSCFG_ICNR 0x1C #define SYSCFG_CMPCR 0x20 #define SYSCFG_CMPENSETR 0x24 #define SYSCFG_PMCCLRR 0x44 #define SYSCFG_BOOTR_BOOT_MASK GENMASK(2, 0) #define SYSCFG_BOOTR_BOOTPD_SHIFT 4 #define SYSCFG_IOCTRLSETR_HSLVEN_TRACE BIT(0) #define SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI BIT(1) #define SYSCFG_IOCTRLSETR_HSLVEN_ETH BIT(2) #define SYSCFG_IOCTRLSETR_HSLVEN_SDMMC BIT(3) #define SYSCFG_IOCTRLSETR_HSLVEN_SPI BIT(4) #define SYSCFG_CMPCR_SW_CTRL BIT(1) #define SYSCFG_CMPCR_READY BIT(8) #define SYSCFG_CMPENSETR_MPU_EN BIT(0) #define SYSCFG_PMCSETR_ETH_CLK_SEL BIT(16) #define SYSCFG_PMCSETR_ETH_REF_CLK_SEL BIT(17) #define SYSCFG_PMCSETR_ETH_SELMII BIT(20) #define SYSCFG_PMCSETR_ETH_SEL_MASK GENMASK(23, 21) #define SYSCFG_PMCSETR_ETH_SEL_GMII_MII 0 #define SYSCFG_PMCSETR_ETH_SEL_RGMII BIT(21) #define SYSCFG_PMCSETR_ETH_SEL_RMII BIT(23) /* * Get a global data pointer */ DECLARE_GLOBAL_DATA_PTR; #define USB_LOW_THRESHOLD_UV 200000 #define USB_WARNING_LOW_THRESHOLD_UV 660000 #define USB_START_LOW_THRESHOLD_UV 1230000 #define USB_START_HIGH_THRESHOLD_UV 2150000 int checkboard(void) { int ret; char *mode; u32 otp; struct udevice *dev; const char *fdt_compat; int fdt_compat_len; if (IS_ENABLED(CONFIG_STM32MP1_OPTEE)) mode = "trusted with OP-TEE"; else if (IS_ENABLED(TFABOOT)) mode = "trusted"; else mode = "basic"; printf("Board: stm32mp1 in %s mode", mode); fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible", &fdt_compat_len); if (fdt_compat && fdt_compat_len) printf(" (%s)", fdt_compat); puts("\n"); /* display the STMicroelectronics board identification */ if (CONFIG_IS_ENABLED(CMD_STBOARD)) { ret = uclass_get_device_by_driver(UCLASS_MISC, DM_GET_DRIVER(stm32mp_bsec), &dev); if (!ret) ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_BOARD), &otp, sizeof(otp)); if (ret > 0 && otp) printf("Board: MB%04x Var%d.%d Rev.%c-%02d\n", otp >> 16, (otp >> 12) & 0xF, (otp >> 4) & 0xF, ((otp >> 8) & 0xF) - 1 + 'A', otp & 0xF); } return 0; } static void board_key_check(void) { #if defined(CONFIG_FASTBOOT) || defined(CONFIG_CMD_STM32PROG) ofnode node; struct gpio_desc gpio; enum forced_boot_mode boot_mode = BOOT_NORMAL; node = ofnode_path("/config"); if (!ofnode_valid(node)) { debug("%s: no /config node?\n", __func__); return; } #ifdef CONFIG_FASTBOOT if (gpio_request_by_name_nodev(node, "st,fastboot-gpios", 0, &gpio, GPIOD_IS_IN)) { debug("%s: could not find a /config/st,fastboot-gpios\n", __func__); } else { if (dm_gpio_get_value(&gpio)) { puts("Fastboot key pressed, "); boot_mode = BOOT_FASTBOOT; } dm_gpio_free(NULL, &gpio); } #endif #ifdef CONFIG_CMD_STM32PROG if (gpio_request_by_name_nodev(node, "st,stm32prog-gpios", 0, &gpio, GPIOD_IS_IN)) { debug("%s: could not find a /config/st,stm32prog-gpios\n", __func__); } else { if (dm_gpio_get_value(&gpio)) { puts("STM32Programmer key pressed, "); boot_mode = BOOT_STM32PROG; } dm_gpio_free(NULL, &gpio); } #endif if (boot_mode != BOOT_NORMAL) { puts("entering download mode...\n"); clrsetbits_le32(TAMP_BOOT_CONTEXT, TAMP_BOOT_FORCED_MASK, boot_mode); } #endif } #if defined(CONFIG_USB_GADGET) && defined(CONFIG_USB_GADGET_DWC2_OTG) /* STMicroelectronics STUSB1600 Type-C controller */ #define STUSB1600_CC_CONNECTION_STATUS 0x0E /* STUSB1600_CC_CONNECTION_STATUS bitfields */ #define STUSB1600_CC_ATTACH BIT(0) static int stusb1600_init(struct udevice **dev_stusb1600) { ofnode node; struct udevice *dev, *bus; int ret; u32 chip_addr; *dev_stusb1600 = NULL; /* if node stusb1600 is present, means DK1 or DK2 board */ node = ofnode_by_compatible(ofnode_null(), "st,stusb1600"); if (!ofnode_valid(node)) return -ENODEV; ret = ofnode_read_u32(node, "reg", &chip_addr); if (ret) return -EINVAL; ret = uclass_get_device_by_ofnode(UCLASS_I2C, ofnode_get_parent(node), &bus); if (ret) { printf("bus for stusb1600 not found\n"); return -ENODEV; } ret = dm_i2c_probe(bus, chip_addr, 0, &dev); if (!ret) *dev_stusb1600 = dev; return ret; } static int stusb1600_cable_connected(struct udevice *dev) { u8 status; if (dm_i2c_read(dev, STUSB1600_CC_CONNECTION_STATUS, &status, 1)) return 0; return status & STUSB1600_CC_ATTACH; } #include int g_dnl_board_usb_cable_connected(void) { struct udevice *stusb1600; struct udevice *dwc2_udc_otg; int ret; if (!stusb1600_init(&stusb1600)) return stusb1600_cable_connected(stusb1600); ret = uclass_get_device_by_driver(UCLASS_USB_GADGET_GENERIC, DM_GET_DRIVER(dwc2_udc_otg), &dwc2_udc_otg); if (!ret) debug("dwc2_udc_otg init failed\n"); return dwc2_udc_B_session_valid(dwc2_udc_otg); } #define STM32MP1_G_DNL_DFU_PRODUCT_NUM 0xdf11 #define STM32MP1_G_DNL_FASTBOOT_PRODUCT_NUM 0x0afb int g_dnl_bind_fixup(struct usb_device_descriptor *dev, const char *name) { if (!strcmp(name, "usb_dnl_dfu")) put_unaligned(STM32MP1_G_DNL_DFU_PRODUCT_NUM, &dev->idProduct); else if (!strcmp(name, "usb_dnl_fastboot")) put_unaligned(STM32MP1_G_DNL_FASTBOOT_PRODUCT_NUM, &dev->idProduct); else put_unaligned(CONFIG_USB_GADGET_PRODUCT_NUM, &dev->idProduct); return 0; } #endif /* CONFIG_USB_GADGET */ #ifdef CONFIG_LED static int get_led(struct udevice **dev, char *led_string) { char *led_name; int ret; led_name = fdtdec_get_config_string(gd->fdt_blob, led_string); if (!led_name) { pr_debug("%s: could not find %s config string\n", __func__, led_string); return -ENOENT; } ret = led_get_by_label(led_name, dev); if (ret) { debug("%s: get=%d\n", __func__, ret); return ret; } return 0; } static int setup_led(enum led_state_t cmd) { struct udevice *dev; int ret; ret = get_led(&dev, "u-boot,boot-led"); if (ret) return ret; ret = led_set_state(dev, cmd); return ret; } #endif static void __maybe_unused led_error_blink(u32 nb_blink) { #ifdef CONFIG_LED int ret; struct udevice *led; u32 i; #endif if (!nb_blink) return; #ifdef CONFIG_LED ret = get_led(&led, "u-boot,error-led"); if (!ret) { /* make u-boot,error-led blinking */ /* if U32_MAX and 125ms interval, for 17.02 years */ for (i = 0; i < 2 * nb_blink; i++) { led_set_state(led, LEDST_TOGGLE); mdelay(125); WATCHDOG_RESET(); } } #endif /* infinite: the boot process must be stopped */ if (nb_blink == U32_MAX) hang(); } #ifdef CONFIG_ADC static int board_check_usb_power(void) { struct ofnode_phandle_args adc_args; struct udevice *adc; ofnode node; unsigned int raw; int max_uV = 0; int min_uV = USB_START_HIGH_THRESHOLD_UV; int ret, uV, adc_count; u32 nb_blink; u8 i; node = ofnode_path("/config"); if (!ofnode_valid(node)) { debug("%s: no /config node?\n", __func__); return -ENOENT; } /* * Retrieve the ADC channels devices and get measurement * for each of them */ adc_count = ofnode_count_phandle_with_args(node, "st,adc_usb_pd", "#io-channel-cells"); if (adc_count < 0) { if (adc_count == -ENOENT) return 0; pr_err("%s: can't find adc channel (%d)\n", __func__, adc_count); return adc_count; } for (i = 0; i < adc_count; i++) { if (ofnode_parse_phandle_with_args(node, "st,adc_usb_pd", "#io-channel-cells", 0, i, &adc_args)) { pr_debug("%s: can't find /config/st,adc_usb_pd\n", __func__); return 0; } ret = uclass_get_device_by_ofnode(UCLASS_ADC, adc_args.node, &adc); if (ret) { pr_err("%s: Can't get adc device(%d)\n", __func__, ret); return ret; } ret = adc_channel_single_shot(adc->name, adc_args.args[0], &raw); if (ret) { pr_err("%s: single shot failed for %s[%d]!\n", __func__, adc->name, adc_args.args[0]); return ret; } /* Convert to uV */ if (!adc_raw_to_uV(adc, raw, &uV)) { if (uV > max_uV) max_uV = uV; if (uV < min_uV) min_uV = uV; pr_debug("%s: %s[%02d] = %u, %d uV\n", __func__, adc->name, adc_args.args[0], raw, uV); } else { pr_err("%s: Can't get uV value for %s[%d]\n", __func__, adc->name, adc_args.args[0]); } } /* * If highest value is inside 1.23 Volts and 2.10 Volts, that means * board is plugged on an USB-C 3A power supply and boot process can * continue. */ if (max_uV > USB_START_LOW_THRESHOLD_UV && max_uV <= USB_START_HIGH_THRESHOLD_UV && min_uV <= USB_LOW_THRESHOLD_UV) return 0; pr_err("****************************************************\n"); /* * If highest and lowest value are either both below * USB_LOW_THRESHOLD_UV or both above USB_LOW_THRESHOLD_UV, that * means USB TYPE-C is in unattached mode, this is an issue, make * u-boot,error-led blinking and stop boot process. */ if ((max_uV > USB_LOW_THRESHOLD_UV && min_uV > USB_LOW_THRESHOLD_UV) || (max_uV <= USB_LOW_THRESHOLD_UV && min_uV <= USB_LOW_THRESHOLD_UV)) { pr_err("* ERROR USB TYPE-C connection in unattached mode *\n"); pr_err("* Check that USB TYPE-C cable is correctly plugged *\n"); /* with 125ms interval, led will blink for 17.02 years ....*/ nb_blink = U32_MAX; } if (max_uV > USB_LOW_THRESHOLD_UV && max_uV <= USB_WARNING_LOW_THRESHOLD_UV && min_uV <= USB_LOW_THRESHOLD_UV) { pr_err("* WARNING 500mA power supply detected *\n"); nb_blink = 2; } if (max_uV > USB_WARNING_LOW_THRESHOLD_UV && max_uV <= USB_START_LOW_THRESHOLD_UV && min_uV <= USB_LOW_THRESHOLD_UV) { pr_err("* WARNING 1.5mA power supply detected *\n"); nb_blink = 3; } /* * If highest value is above 2.15 Volts that means that the USB TypeC * supplies more than 3 Amp, this is not compliant with TypeC specification */ if (max_uV > USB_START_HIGH_THRESHOLD_UV) { pr_err("* USB TYPE-C charger not compliant with *\n"); pr_err("* specification *\n"); pr_err("****************************************************\n\n"); /* with 125ms interval, led will blink for 17.02 years ....*/ nb_blink = U32_MAX; } else { pr_err("* Current too low, use a 3A power supply! *\n"); pr_err("****************************************************\n\n"); } led_error_blink(nb_blink); return 0; } #endif /* CONFIG_ADC */ static void sysconf_init(void) { #ifndef CONFIG_TFABOOT u8 *syscfg; #ifdef CONFIG_DM_REGULATOR struct udevice *pwr_dev; struct udevice *pwr_reg; struct udevice *dev; int ret; u32 otp = 0; #endif u32 bootr; syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG); /* interconnect update : select master using the port 1 */ /* LTDC = AXI_M9 */ /* GPU = AXI_M8 */ /* today information is hardcoded in U-Boot */ writel(BIT(9), syscfg + SYSCFG_ICNR); /* disable Pull-Down for boot pin connected to VDD */ bootr = readl(syscfg + SYSCFG_BOOTR); bootr &= ~(SYSCFG_BOOTR_BOOT_MASK << SYSCFG_BOOTR_BOOTPD_SHIFT); bootr |= (bootr & SYSCFG_BOOTR_BOOT_MASK) << SYSCFG_BOOTR_BOOTPD_SHIFT; writel(bootr, syscfg + SYSCFG_BOOTR); #ifdef CONFIG_DM_REGULATOR /* High Speed Low Voltage Pad mode Enable for SPI, SDMMC, ETH, QSPI * and TRACE. Needed above ~50MHz and conditioned by AFMUX selection. * The customer will have to disable this for low frequencies * or if AFMUX is selected but the function not used, typically for * TRACE. Otherwise, impact on power consumption. * * WARNING: * enabling High Speed mode while VDD>2.7V * with the OTP product_below_2v5 (OTP 18, BIT 13) * erroneously set to 1 can damage the IC! * => U-Boot set the register only if VDD < 2.7V (in DT) * but this value need to be consistent with board design */ ret = uclass_get_device_by_driver(UCLASS_PMIC, DM_GET_DRIVER(stm32mp_pwr_pmic), &pwr_dev); if (!ret) { ret = uclass_get_device_by_driver(UCLASS_MISC, DM_GET_DRIVER(stm32mp_bsec), &dev); if (ret) { pr_err("Can't find stm32mp_bsec driver\n"); return; } ret = misc_read(dev, STM32_BSEC_SHADOW(18), &otp, 4); if (ret > 0) otp = otp & BIT(13); /* get VDD = vdd-supply */ ret = device_get_supply_regulator(pwr_dev, "vdd-supply", &pwr_reg); /* check if VDD is Low Voltage */ if (!ret) { if (regulator_get_value(pwr_reg) < 2700000) { writel(SYSCFG_IOCTRLSETR_HSLVEN_TRACE | SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI | SYSCFG_IOCTRLSETR_HSLVEN_ETH | SYSCFG_IOCTRLSETR_HSLVEN_SDMMC | SYSCFG_IOCTRLSETR_HSLVEN_SPI, syscfg + SYSCFG_IOCTRLSETR); if (!otp) pr_err("product_below_2v5=0: HSLVEN protected by HW\n"); } else { if (otp) pr_err("product_below_2v5=1: HSLVEN update is destructive, no update as VDD>2.7V\n"); } } else { debug("VDD unknown"); } } #endif /* activate automatic I/O compensation * warning: need to ensure CSI enabled and ready in clock driver */ writel(SYSCFG_CMPENSETR_MPU_EN, syscfg + SYSCFG_CMPENSETR); while (!(readl(syscfg + SYSCFG_CMPCR) & SYSCFG_CMPCR_READY)) ; clrbits_le32(syscfg + SYSCFG_CMPCR, SYSCFG_CMPCR_SW_CTRL); #endif } #ifdef CONFIG_DM_REGULATOR /* Fix to make I2C1 usable on DK2 for touchscreen usage in kernel */ static int dk2_i2c1_fix(void) { ofnode node; struct gpio_desc hdmi, audio; int ret = 0; node = ofnode_path("/soc/i2c@40012000/hdmi-transmitter@39"); if (!ofnode_valid(node)) { pr_debug("%s: no hdmi-transmitter@39 ?\n", __func__); return -ENOENT; } if (gpio_request_by_name_nodev(node, "reset-gpios", 0, &hdmi, GPIOD_IS_OUT)) { pr_debug("%s: could not find reset-gpios\n", __func__); return -ENOENT; } node = ofnode_path("/soc/i2c@40012000/cs42l51@4a"); if (!ofnode_valid(node)) { pr_debug("%s: no cs42l51@4a ?\n", __func__); return -ENOENT; } if (gpio_request_by_name_nodev(node, "reset-gpios", 0, &audio, GPIOD_IS_OUT)) { pr_debug("%s: could not find reset-gpios\n", __func__); return -ENOENT; } /* before power up, insure that HDMI and AUDIO IC is under reset */ ret = dm_gpio_set_value(&hdmi, 1); if (ret) { pr_err("%s: can't set_value for hdmi_nrst gpio", __func__); goto error; } ret = dm_gpio_set_value(&audio, 1); if (ret) { pr_err("%s: can't set_value for audio_nrst gpio", __func__); goto error; } /* power-up audio IC */ regulator_autoset_by_name("v1v8_audio", NULL); /* power-up HDMI IC */ regulator_autoset_by_name("v1v2_hdmi", NULL); regulator_autoset_by_name("v3v3_hdmi", NULL); error: return ret; } static bool board_is_dk2(void) { if (CONFIG_IS_ENABLED(TARGET_ST_STM32MP15x) && of_machine_is_compatible("st,stm32mp157c-dk2")) return true; return false; } #endif /* board dependent setup after realloc */ int board_init(void) { struct udevice *dev; /* address of boot parameters */ gd->bd->bi_boot_params = STM32_DDR_BASE + 0x100; /* probe all PINCTRL for hog */ for (uclass_first_device(UCLASS_PINCTRL, &dev); dev; uclass_next_device(&dev)) { pr_debug("probe pincontrol = %s\n", dev->name); } board_key_check(); #ifdef CONFIG_DM_REGULATOR if (board_is_dk2()) dk2_i2c1_fix(); regulators_enable_boot_on(_DEBUG); #endif sysconf_init(); if (CONFIG_IS_ENABLED(CONFIG_LED)) led_default_state(); return 0; } int board_late_init(void) { char *boot_device; #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG const void *fdt_compat; int fdt_compat_len; int ret; u32 otp; struct udevice *dev; char buf[10]; fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible", &fdt_compat_len); if (fdt_compat && fdt_compat_len) { if (strncmp(fdt_compat, "st,", 3) != 0) env_set("board_name", fdt_compat); else env_set("board_name", fdt_compat + 3); } ret = uclass_get_device_by_driver(UCLASS_MISC, DM_GET_DRIVER(stm32mp_bsec), &dev); if (!ret) ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_BOARD), &otp, sizeof(otp)); if (!ret && otp) { snprintf(buf, sizeof(buf), "0x%04x", otp >> 16); env_set("board_id", buf); snprintf(buf, sizeof(buf), "0x%04x", ((otp >> 8) & 0xF) - 1 + 0xA); env_set("board_rev", buf); } #endif #ifdef CONFIG_ADC /* for DK1/DK2 boards */ board_check_usb_power(); #endif /* CONFIG_ADC */ /* Check the boot-source to disable bootdelay */ boot_device = env_get("boot_device"); if (!strcmp(boot_device, "serial") || !strcmp(boot_device, "usb")) env_set("bootdelay", "0"); return 0; } void board_quiesce_devices(void) { #ifdef CONFIG_LED setup_led(LEDST_OFF); #endif } /* eth init function : weak called in eqos driver */ int board_interface_eth_init(struct udevice *dev, phy_interface_t interface_type) { u8 *syscfg; u32 value; bool eth_clk_sel_reg = false; bool eth_ref_clk_sel_reg = false; /* Gigabit Ethernet 125MHz clock selection. */ eth_clk_sel_reg = dev_read_bool(dev, "st,eth_clk_sel"); /* Ethernet 50Mhz RMII clock selection */ eth_ref_clk_sel_reg = dev_read_bool(dev, "st,eth_ref_clk_sel"); syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG); if (!syscfg) return -ENODEV; switch (interface_type) { case PHY_INTERFACE_MODE_MII: value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII | SYSCFG_PMCSETR_ETH_REF_CLK_SEL; debug("%s: PHY_INTERFACE_MODE_MII\n", __func__); break; case PHY_INTERFACE_MODE_GMII: if (eth_clk_sel_reg) value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII | SYSCFG_PMCSETR_ETH_CLK_SEL; else value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII; debug("%s: PHY_INTERFACE_MODE_GMII\n", __func__); break; case PHY_INTERFACE_MODE_RMII: if (eth_ref_clk_sel_reg) value = SYSCFG_PMCSETR_ETH_SEL_RMII | SYSCFG_PMCSETR_ETH_REF_CLK_SEL; else value = SYSCFG_PMCSETR_ETH_SEL_RMII; debug("%s: PHY_INTERFACE_MODE_RMII\n", __func__); break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: if (eth_clk_sel_reg) value = SYSCFG_PMCSETR_ETH_SEL_RGMII | SYSCFG_PMCSETR_ETH_CLK_SEL; else value = SYSCFG_PMCSETR_ETH_SEL_RGMII; debug("%s: PHY_INTERFACE_MODE_RGMII\n", __func__); break; default: debug("%s: Do not manage %d interface\n", __func__, interface_type); /* Do not manage others interfaces */ return -EINVAL; } /* clear and set ETH configuration bits */ writel(SYSCFG_PMCSETR_ETH_SEL_MASK | SYSCFG_PMCSETR_ETH_SELMII | SYSCFG_PMCSETR_ETH_REF_CLK_SEL | SYSCFG_PMCSETR_ETH_CLK_SEL, syscfg + SYSCFG_PMCCLRR); writel(value, syscfg + SYSCFG_PMCSETR); return 0; } enum env_location env_get_location(enum env_operation op, int prio) { u32 bootmode = get_bootmode(); if (prio) return ENVL_UNKNOWN; switch (bootmode & TAMP_BOOT_DEVICE_MASK) { #ifdef CONFIG_ENV_IS_IN_EXT4 case BOOT_FLASH_SD: case BOOT_FLASH_EMMC: return ENVL_EXT4; #endif #ifdef CONFIG_ENV_IS_IN_UBI case BOOT_FLASH_NAND: return ENVL_UBI; #endif #ifdef CONFIG_ENV_IS_IN_SPI_FLASH case BOOT_FLASH_NOR: return ENVL_SPI_FLASH; #endif default: return ENVL_NOWHERE; } } #if defined(CONFIG_ENV_IS_IN_EXT4) const char *env_ext4_get_intf(void) { u32 bootmode = get_bootmode(); switch (bootmode & TAMP_BOOT_DEVICE_MASK) { case BOOT_FLASH_SD: case BOOT_FLASH_EMMC: return "mmc"; default: return ""; } } const char *env_ext4_get_dev_part(void) { static char *const dev_part[] = {"0:auto", "1:auto", "2:auto"}; u32 bootmode = get_bootmode(); return dev_part[(bootmode & TAMP_BOOT_INSTANCE_MASK) - 1]; } #endif #ifdef CONFIG_SYS_MTDPARTS_RUNTIME #define MTDPARTS_LEN 256 #define MTDIDS_LEN 128 /** * The mtdparts_nand0 and mtdparts_nor0 variable tends to be long. * If we need to access it before the env is relocated, then we need * to use our own stack buffer. gd->env_buf will be too small. * * @param buf temporary buffer pointer MTDPARTS_LEN long * @return mtdparts variable string, NULL if not found */ static const char *env_get_mtdparts(const char *str, char *buf) { if (gd->flags & GD_FLG_ENV_READY) return env_get(str); if (env_get_f(str, buf, MTDPARTS_LEN) != -1) return buf; return NULL; } /** * update the variables "mtdids" and "mtdparts" with content of mtdparts_ */ static void board_get_mtdparts(const char *dev, char *mtdids, char *mtdparts) { char env_name[32] = "mtdparts_"; char tmp_mtdparts[MTDPARTS_LEN]; const char *tmp; /* name of env variable to read = mtdparts_ */ strcat(env_name, dev); tmp = env_get_mtdparts(env_name, tmp_mtdparts); if (tmp) { /* mtdids: "=, ...." */ if (mtdids[0] != '\0') strcat(mtdids, ","); strcat(mtdids, dev); strcat(mtdids, "="); strcat(mtdids, dev); /* mtdparts: "mtdparts=:>;..." */ if (mtdparts[0] != '\0') strncat(mtdparts, ";", MTDPARTS_LEN); else strcat(mtdparts, "mtdparts="); strncat(mtdparts, dev, MTDPARTS_LEN); strncat(mtdparts, ":", MTDPARTS_LEN); strncat(mtdparts, tmp, MTDPARTS_LEN); } } void board_mtdparts_default(const char **mtdids, const char **mtdparts) { struct mtd_info *mtd; struct udevice *dev; static char parts[3 * MTDPARTS_LEN + 1]; static char ids[MTDIDS_LEN + 1]; static bool mtd_initialized; if (mtd_initialized) { *mtdids = ids; *mtdparts = parts; return; } memset(parts, 0, sizeof(parts)); memset(ids, 0, sizeof(ids)); /* probe all MTD devices */ for (uclass_first_device(UCLASS_MTD, &dev); dev; uclass_next_device(&dev)) { pr_debug("mtd device = %s\n", dev->name); } mtd = get_mtd_device_nm("nand0"); if (!IS_ERR_OR_NULL(mtd)) { board_get_mtdparts("nand0", ids, parts); put_mtd_device(mtd); } mtd = get_mtd_device_nm("spi-nand0"); if (!IS_ERR_OR_NULL(mtd)) { board_get_mtdparts("spi-nand0", ids, parts); put_mtd_device(mtd); } if (!uclass_get_device(UCLASS_SPI_FLASH, 0, &dev)) board_get_mtdparts("nor0", ids, parts); mtd_initialized = true; *mtdids = ids; *mtdparts = parts; debug("%s:mtdids=%s & mtdparts=%s\n", __func__, ids, parts); } #endif #if defined(CONFIG_OF_BOARD_SETUP) int ft_board_setup(void *blob, bd_t *bd) { #ifdef CONFIG_FDT_FIXUP_PARTITIONS struct node_info nodes[] = { { "st,stm32f469-qspi", MTD_DEV_TYPE_NOR, }, { "st,stm32mp15-fmc2", MTD_DEV_TYPE_NAND, }, }; fdt_fixup_mtdparts(blob, nodes, ARRAY_SIZE(nodes)); #endif return 0; } #endif #ifdef CONFIG_SET_DFU_ALT_INFO #define DFU_ALT_BUF_LEN SZ_1K static void board_get_alt_info(const char *dev, char *buff) { char var_name[32] = "dfu_alt_info_"; int ret; ALLOC_CACHE_ALIGN_BUFFER(char, tmp_alt, DFU_ALT_BUF_LEN); /* name of env variable to read = dfu_alt_info_ */ strcat(var_name, dev); ret = env_get_f(var_name, tmp_alt, DFU_ALT_BUF_LEN); if (ret) { if (buff[0] != '\0') strcat(buff, "&"); strncat(buff, tmp_alt, DFU_ALT_BUF_LEN); } } void set_dfu_alt_info(char *interface, char *devstr) { struct udevice *dev; struct mtd_info *mtd; ALLOC_CACHE_ALIGN_BUFFER(char, buf, DFU_ALT_BUF_LEN); if (env_get("dfu_alt_info")) return; memset(buf, 0, sizeof(buf)); /* probe all MTD devices */ mtd_probe_devices(); board_get_alt_info("ram", buf); if (!uclass_get_device(UCLASS_MMC, 0, &dev)) board_get_alt_info("mmc0", buf); if (!uclass_get_device(UCLASS_MMC, 1, &dev)) board_get_alt_info("mmc1", buf); if (!uclass_get_device(UCLASS_SPI_FLASH, 0, &dev)) board_get_alt_info("nor0", buf); mtd = get_mtd_device_nm("nand0"); if (!IS_ERR_OR_NULL(mtd)) board_get_alt_info("nand0", buf); mtd = get_mtd_device_nm("spi-nand0"); if (!IS_ERR_OR_NULL(mtd)) board_get_alt_info("spi-nand0", buf); #ifdef CONFIG_DFU_VIRT strncat(buf, "&virt 0=OTP", DFU_ALT_BUF_LEN); if (IS_ENABLED(CONFIG_PMIC_STPMIC1)) strncat(buf, "&virt 1=PMIC", DFU_ALT_BUF_LEN); #endif env_set("dfu_alt_info", buf); puts("DFU alt info setting: done\n"); } #if CONFIG_IS_ENABLED(DFU_VIRT) #include #include static int dfu_otp_read(u64 offset, u8 *buffer, long *size) { struct udevice *dev; int ret; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_GET_DRIVER(stm32mp_bsec), &dev); if (ret) return ret; ret = misc_read(dev, offset + STM32_BSEC_OTP_OFFSET, buffer, *size); if (ret >= 0) { *size = ret; ret = 0; } return 0; } static int dfu_pmic_read(u64 offset, u8 *buffer, long *size) { int ret; #ifdef CONFIG_PMIC_STPMIC1 struct udevice *dev; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_GET_DRIVER(stpmic1_nvm), &dev); if (ret) return ret; ret = misc_read(dev, 0xF8 + offset, buffer, *size); if (ret >= 0) { *size = ret; ret = 0; } if (ret == -EACCES) { *size = 0; ret = 0; } #else pr_err("PMIC update not supported"); ret = -EOPNOTSUPP; #endif return ret; } int dfu_read_medium_virt(struct dfu_entity *dfu, u64 offset, void *buf, long *len) { switch (dfu->data.virt.dev_num) { case 0x0: return dfu_otp_read(offset, buf, len); case 0x1: return dfu_pmic_read(offset, buf, len); } *len = 0; return 0; } int __weak dfu_get_medium_size_virt(struct dfu_entity *dfu, u64 *size) { *size = SZ_1K; return 0; } #endif #endif static void board_copro_image_process(ulong fw_image, size_t fw_size) { int ret, id = 0; /* Copro id fixed to 0 as only one coproc on mp1 */ if (!rproc_is_initialized()) if (rproc_init()) { printf("Remote Processor %d initialization failed\n", id); return; } ret = rproc_load(id, fw_image, fw_size); printf("Load Remote Processor %d with data@addr=0x%08lx %u bytes:%s\n", id, fw_image, fw_size, ret ? " Failed!" : " Success!"); if (!ret) rproc_start(id); } U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_COPRO, board_copro_image_process);